Skip to main content

Surface Operators and Knot Homologies

  • Conference paper
New Trends in Mathematical Physics

Abstract

Topological gauge theories in four dimensions which admit surface operators provide a natural framework for realizing homological knot invariants. Every such theory leads to an action of the braid group on branes on the corresponding moduli space. This action plays a key role in the construction of homological knot invariants. We illustrate the general construction with examples based on surface operators in N=2 and N=4 twisted gauge theories which lead to a categorification of the Alexander polynomial, the equivariant knot signature, and certain analogs of the Casson invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Atiyah, Floer homology. Prog. Math. Birkhauser 133, 105 (1995)

    MathSciNet  Google Scholar 

  2. D. Bar-Natan, Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9, 1443 (2005). math.GT/0410495

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Bershadsky, A. Johansen, V. Sadov, and C. Vafa, Topological reduction of 4-d SYM to 2-d sigma models. Nucl. Phys. B 448, 166 (1995). hep-th/9501096

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M. Blau and G. Thompson, On the relationship between the Rozansky-Witten and the three-dimensional Seiberg-Witten invariants. Adv. Theor. Math. Phys. 5, 483 (2002). hep-th/0006244

    MathSciNet  Google Scholar 

  5. H. Boden, and C. Curtis, The SL(2,C) Casson invariant for Seifert fibered homology spheres and surgeries on twist knots. math.GT/0602023

  6. H. Boden, C. Herald, P. Kirk, and E. Klassen, Gauge theoretic invariants of Dehn surgeries on knots. Geom. Topol. 5, 143 (2001). math.GT/9908020

    Article  MATH  MathSciNet  Google Scholar 

  7. A.I. Bondal and M.M. Kapranov, Framed triangulated categories. Math. USSR-Sb. 70, 93 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Cappell, R. Lee, and E. Miller, Surgery Formulae for Analytical Invariants of Manifolds. Contemp. Math., vol. 279. Am. Math. Soc., Providence (2001)

    Google Scholar 

  9. S. Cappell, R. Lee, and E. Miller, Equivariant Casson invariant. Preprint

    Google Scholar 

  10. O. Collin, Floer Homology for Orbifolds and Gauge Theory Knot Invariants, Knots, vol. 96, p. 201. Singapore, World Scientific (1997)

    Google Scholar 

  11. O. Collin, Floer homology for knots and SU(2)-representations for knot complements and cyclic branched covers. Can. J. Math. 52, 293 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. O. Collin and B. Steer, Instanton Floer homology for knots via 3-orbifolds. J. Differ. Geom. 51, 149 (1999)

    MATH  MathSciNet  Google Scholar 

  13. D. Cooper, M. Culler, H. Gillet, D.D. Long, and P.B. Shalen, Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118, 47 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. L. Crane and I. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35, 5136 (1994). hep-th/9405183

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. N. Dunfield, S. Gukov, and J. Rasmussen, The superpolynomial for knot homologies. Exp. Math. 15, 129 (2006). math.GT/0505662

    MATH  MathSciNet  Google Scholar 

  16. K. Fukaya, Floer homology for 3-manifolds with boundary. In: Topology, Geometry, and Field Theory. World Scientific, River Edge (1994)

    Google Scholar 

  17. R. Gopakumar and C. Vafa, M-theory and topological strings. I. hep-th/9809187

  18. R. Gopakumar, and C. Vafa, M-theory and topological strings. II. hep-th/9812127

  19. S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Commun. Math. Phys. 255, 577 (2005). hep-th/0306165

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. S. Gukov and J. Walcher, Matrix factorizations and Kauffman homology. hep-th/0512298

  21. S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program. hep-th/0612073

  22. S. Gukov, A. Schwarz, and C. Vafa, Khovanov-Rozansky homology and topological strings. Lett. Math. Phys. 74, 53 (2005). hep-th/0412243

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. S. Gukov, A. Iqbal, C. Kozcaz, and C. Vafa, Link homologies and the refined topological vertex. arXiv:0705.1368

  24. J. Harvey, G. Moore, and A. Strominger, Reducing S duality to T duality. Phys. Rev. D 52, 7161 (1995). hep-th/9501022

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Herald, Existence of irreducible representations of knot complements with nonconstant equivariant signature. Math. Ann. 309, 21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Herald, Flat connections, the Alexander invariant, and Casson’s invariant. Commun. Anal. Geom. 5, 93 (1997)

    MATH  MathSciNet  Google Scholar 

  27. N. Hitchin, The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55, 59 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Hitchin, Geometrical aspects of Schlesinger’s equation. J. Geom. Phys. 23, 287 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. R. Huerfano and M. Khovanov, A category for the adjoint representation. J. Algebra 246, 514 (2001). math.QA/0002060

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Inaba, K. Iwasaki, and M.-H. Saito, Dynamics of the sixth Painleve equation. In: Proceedings of Conference Internationale Theories Asymptotiques et Equations de Painleve, Seminaires et Congres, Soc. Math. France. math.AG/0501007

  31. K. Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painleve VI equation. Proc. Jpn. Acad., Ser. A, Math. Sci. 78, 131 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. K. Iwasaki, An area-preserving action of the modular group on cubic surfaces and the Painleve VI equation. Commun. Math. Phys. 242, 185 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  33. K. Iwasaki and T. Uehara, Periodic solutions to Painleve VI and dynamical system on cubic surface. math.AG/0512583

  34. M. Jacobsson, An invariant of link cobordisms from Khovanov homology. Algebr. Geom. Topol. 4, 1211 (2004). math.GT/0206303

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Jaffe and C. Taubes, Vortices and Monopoles. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  36. A. Kapustin, and E. Witten, Electric-magnetic duality and the geometric Langlands program. hep-th/0604151

  37. M. Khovanov, A categorification of the Jones polynomial. Duke Math. J. 101, 359 (2000). math.QA/9908171

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Khovanov, A functor-valued invariant of tangles. Algebr. Geom. Topol. 2, 665 (2002). math.QA/0103190

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Khovanov, sl(3) link homology I. Algebr. Geom. Topol. 4, 1045 (2004). math.QA/0304375

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Khovanov, Categorifications of the colored Jones polynomial. J. Knot Theory Ramif. 14, 111 (2005). math.QA/0302060

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Khovanov and L. Rozansky, Matrix factorizations and link homology. math.QA/0401268

  42. M. Khovanov and L. Rozansky, Matrix factorizations and link homology II. math.QA/0505056

  43. E. Klassen, Representations of knot groups in SU(2). Trans. Am. Math. Soc. 326, 795 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Kontsevich, Homological algebra of mirror symmetry. alg-geom/9411018

  45. J. Kroll, Äquivariante Signatur und SU(2)-Darstellungsräume von Knotengruppen, Diplomarbeit, Universität-Gesamthochschule Siegen (1996)

    Google Scholar 

  46. P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces. I. Topology 32, 773 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces. II. Topology 34, 37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. P.B. Kronheimer and T.S. Mrowka, Floer homology for Seiberg-Witten monopoles (in preparation)

    Google Scholar 

  49. J.M.F. Labastida, M. Marino, and C. Vafa, Knots, links and branes at large N. J. High Energy Phys. 0011, 007 (2000). hep-th/0010102

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Li, Casson-Lin’s invariant and Floer homology. J. Knot Theory Ramif. 6, 851 (1997)

    Article  MATH  Google Scholar 

  51. W. Li, Knot and link invariants and moduli space of parabolic bundles. Commun. Contemp. Math. 3, 501 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. Y. Lim, The equivalence of Seiberg-Witten and Casson invariants for homology 3-spheres. Math. Res. Lett. 6, 631 (1999)

    MATH  MathSciNet  ADS  Google Scholar 

  53. X.S. Lin, A knot invariant via representation spaces. J. Differ. Geom. 35, 337 (1992)

    MATH  Google Scholar 

  54. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). hep-th/9711200

    MATH  ADS  MathSciNet  Google Scholar 

  55. C. Manolescu, Nilpotent slices, Hilbert schemes, and the Jones polynomial. math.SG/0411015

  56. C. Manolescu, Link homology theories from symplectic geometry. math.SG/0601629

  57. M. Marino and G.W. Moore, 3-manifold topology and the Donaldson-Witten partition function. Nucl. Phys. B 547, 569 (1999). hep-th/9811214

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. G. Meng and C. Taubes, SW= Milnor Torsion. Math. Res. Lett. 3, 661 (1996)

    MATH  MathSciNet  Google Scholar 

  59. L. Nicolaescu, Seiberg-Witten invariants of rational homology spheres. math.GT/0103020

  60. H. Ooguri and C. Vafa, Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000). hep-th/9912123

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. P. Ozsvath and Z. Szabo, Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. 159, 1027 (2004). math.SG/0101206

    Article  MATH  MathSciNet  Google Scholar 

  62. P. Ozsvath and Z. Szabo, Holomorphic disks and knot invariants. Adv. Math. 186, 58 (2004). math.GT/0209056

    Article  MATH  MathSciNet  Google Scholar 

  63. P. Ozsvath and Z. Szabo, Holomorphic disks and link invariants. math.GT/0512286

  64. J. Rasmussen, Floer homology and knot complements. math.GT/0306378

  65. L. Rozansky and E. Witten, Hyper-Kaehler geometry and invariants of three-manifolds. Sel. Math. 3, 401 (1997). hep-th/9612216

    Article  MATH  MathSciNet  Google Scholar 

  66. H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painleve equations. Commun. Math. Phys. 220, 165 (2001)

    Article  MATH  ADS  Google Scholar 

  67. N. Seiberg and E. Witten, Electric–magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19 (1994). Erratum-ibid. B 430 (1994) 485. hep-th/9407087

    Article  MATH  ADS  MathSciNet  Google Scholar 

  68. P. Seidel, Lagrangian two-spheres can be symplectically knotted. J. Differ. Geom. 52, 145 (1999). math.DG/9803083

    MATH  MathSciNet  Google Scholar 

  69. P. Seidel and I. Smith, A link invariant from the symplectic geometry of nilpotent slices. math.SG/0405089

  70. P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108, 37 (2001). math.AG/0001043

    Article  MATH  MathSciNet  Google Scholar 

  71. C. Taubes, Seiberg Witten and Gromov Invariants for Symplectic 4-Manifolds. International Press, Somerville (2000)

    MATH  Google Scholar 

  72. E. Witten, Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  73. E. Witten, Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. E. Witten, Monopoles and four manifolds. Math. Res. Lett. 1, 769 (1994). hep-th/9411102

    MATH  MathSciNet  Google Scholar 

  75. E. Witten, Chern-Simons gauge theory as a string theory. Prog. Math. 133, 637 (1995). hep-th/9207094

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Gukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gukov, S. (2009). Surface Operators and Knot Homologies. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_22

Download citation

Publish with us

Policies and ethics