Skip to main content

Almost Everything About the Fibonacci Operator

  • Conference paper
Book cover New Trends in Mathematical Physics

Abstract

We consider the Fibonacci operator and discuss results that have been obtained for the spectrum, the spectral measures, and the rate of wavepacket spreading. Our presentation is centered around a distortion result that describes the preimage of balls under the trace of the transfer matrix associated with sites given by Fibonacci numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one-dimensional quasicrystals. Commun. Math. Phys. 125, 527–543 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107, 295–318 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. D. Damanik, α-continuity properties of one-dimensional quasicrystals. Commun. Math. Phys. 192, 169–182 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrystals. In: Directions in Mathematical Quasicrystals. CRM Monogr. Ser., vol. 13, pp. 277–305. Am. Math. Soc., Providence (2000)

    Google Scholar 

  5. D. Damanik, Dynamical upper bounds for one-dimensional quasicrystals. J. Math. Anal. Appl. 303, 327–341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues. Commun. Math. Phys. 207, 687–696 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent. Lett. Math. Phys. 50, 245–257 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Damanik and S. Tcheremchantsev, Power-Law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236, 513–534 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. D. Damanik and S. Tcheremchantsev, Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading. J. Anal. Math. 97, 103–131 (2005)

    Article  MathSciNet  Google Scholar 

  10. D. Damanik and S. Tcheremchantsev, Upper bounds in quantum dynamics. J. Am. Math. Soc. 20, 799–827 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Damanik and S. Tcheremchantsev, in preparation

    Google Scholar 

  12. D. Damanik, R. Killip, and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. III. α-continuity. Commun. Math. Phys. 212, 191–204 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. D. Damanik, A. Sütő, and S. Tcheremchantsev, Power-Law bounds on transfer matrices and quantum dynamics in one dimension II. J. Funct. Anal. 216, 362–387 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Damanik, M. Embree, A. Gorodetski, and S. Tcheremchantsev, The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Preprint (2007)

    Google Scholar 

  15. A. Gordon, On the point spectrum of the one-dimensional Schrödinger operator. Usp. Math. Nauk 31, 257–258 (1976)

    MATH  Google Scholar 

  16. A. Hof, Some remarks on discrete aperiodic Schrödinger operators. J. Stat. Phys. 72, 1353–1374 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. A. Hof, O. Knill, and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174, 149–159 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. B. Iochum and D. Testard, Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65, 715–723 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. S. Jitomirskaya, Almost everything about the almost Mathieu operator. II. In: XIth International Congress of Mathematical Physics, Paris, 1994, pp. 373–382. Int. Press, Cambridge (1995)

    Google Scholar 

  20. S. Jitomirskaya and Y. Last, Power law subordinacy and singular spectra. II. Line operators. Commun. Math. Phys. 211, 643–658 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. M. Kaminaga, Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential. Forum Math. 8, 63–69 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Killip, A. Kiselev, and Y. Last, Dynamical upper bounds on wavepacket spreading. Am. J. Math. 125, 1165–1198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Kotani, Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1, 129–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Last, Almost everything about the almost Mathieu operator. I. In: XIth International Congress of Mathematical Physics, Paris, 1994, pp. 366–372. Int. Press, Cambridge (1995)

    Google Scholar 

  25. D. Lenz, Singular continuous spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Commun. Math. Phys. 227, 119–130 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Q.-H. Liu and Z.-Y. Wen, Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials. Potential Anal. 20, 33–59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Raymond, A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain. Preprint (1997)

    Google Scholar 

  28. A. Sütő, The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409–415 (1987)

    Article  ADS  Google Scholar 

  29. A. Sütő, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56, 525–531 (1989)

    Article  ADS  Google Scholar 

  30. A. Sütő, Schrödinger difference equation with deterministic ergodic potentials. In: Beyond Quasicrystals, Les Houches, 1994, pp. 481–549. Springer, Berlin (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Damanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Damanik, D. (2009). Almost Everything About the Fibonacci Operator. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_13

Download citation

Publish with us

Policies and ethics