Skip to main content

Black Hole Entropy Function and Duality

  • Conference paper
New Trends in Mathematical Physics
  • 1673 Accesses

Abstract

The macroscopic entropy and the attractor equations for extremal black hole solutions follow from a variational principle based on an entropy function. We review this variational principle for static extremal black holes in four space-time dimensions and we apply it to N=2 supergravity theories with higher-curvature interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Behrndt, et al., Nucl. Phys. B 488, 236–260 (1997). hep-th/9610105

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. G.L. Cardoso, B. de Wit, and T. Mohaupt, Phys. Lett. B 451, 309 (1999). hep-th/9812082

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. G.L. Cardoso, B. de Wit, J. Käppeli, and T. Mohaupt, J. High Energy Phys. 12, 019 (2000). hep-th/0009234

    Article  Google Scholar 

  4. G.L. Cardoso, B. de Wit, J. Käppeli, and T. Mohaupt, J. High Energy Phys. 03, 074 (2006). hep-th/0601108

    Article  ADS  Google Scholar 

  5. G.L. Cardoso, B. de Wit, and S. Mahapatra, hep-th/0612225

  6. B. de Wit, Nucl. Phys. Proc. Suppl. 101, 154 (2001). hep-th/0103086

    Article  ADS  Google Scholar 

  7. F. Denef and G. Moore, hep-th/0702146

  8. S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1525–1534 (1996). hep-th/9603090

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1514 (1996). hep-th/9602136

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Ferrara, R. Kallosh, and A. Strominger, Phys. Rev. D 52, 5412 (1995). hep-th/9508072

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Ferrara, G.W. Gibbons, and R. Kallosh, Nucl. Phys. B 500, 75–93 (1997). hep-th/9702103

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. G.W. Gibbons, In: Olive, D.I., West, P.C. (eds.) Duality and Supersymmetric Theories, p. 267. Cambridge (1997)

    Google Scholar 

  13. K. Goldstein, N. Iizuka, R.P. Jena, and S.P. Trivedi, Phys. Rev. D 72, 124021 (2005). hep-th/0507096

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Iyer and R.M. Wald, Phys. Rev. D 50, 846 (1994). gr-qc/9403028

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Jacobson, G. Kang, and R.C. Myers, Phys. Rev. D 49, 6587 (1994). gr-qc/9312023

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Ooguri, A. Strominger, and C. Vafa, Phys. Rev. D 70, 106007 (2004). hep-th/0405146

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Sahoo and A. Sen, J. High Energy Phys. 09, 029 (2006). hep-th/0603149

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Sen, J. High Energy Phys. 0509, 038 (2005). hep-th/0506177

    Article  ADS  Google Scholar 

  19. D. Shih and X. Yin, J. High Energy Phys. 0604, 034 (2006). hep-th/0508174

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Strominger, Phys. Lett. B 383, 39 (1996). hep-th/9602111

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996). hep-th/9601029

    Article  ADS  MathSciNet  Google Scholar 

  22. R.M. Wald, Phys. Rev. D 48, 3427 (1993). gr-qc/9307038

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Lopes Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Cardoso, G.L. (2009). Black Hole Entropy Function and Duality. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_10

Download citation

Publish with us

Policies and ethics