Skip to main content

Entropy of Eigenfunctions

  • Conference paper

Abstract

We study the high-energy limit for eigenfunctions of the Laplacian, on a compact negatively curved manifold. We review the recent result of Anantharaman–Nonnenmacher (Ann. Inst. Fourier 57(7):2465–2523, 2007) giving a lower bound on the Kolmogorov–Sinai entropy of semiclassical measures. The bound proved here improves that result in the case of variable negative curvature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alicki and M. Fannes, Defining quantum dynamical entropy. Lett. Math. Phys. 32, 75–82 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. N. Anantharaman, Entropy and the localization of eigenfunctions. Ann. Math. 168(2), 435–475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Anantharaman and S. Nonnenmacher, Entropy of semiclassical measures of the Walsh-quantized baker’s map. Ann. Henri Poincaré 8, 37–74 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions of the Laplacian on an Anosov manifold. Ann. Inst. Fourier 57(7), 2465–2523 (2007)

    MATH  MathSciNet  Google Scholar 

  5. F. Benatti, V. Cappellini, M. De Cock, M. Fannes, and D. Van Peteghem, Classical limit of quantum dynamical entropies. Rev. Math. Phys. 15, 1–29 (2003)

    Article  MathSciNet  Google Scholar 

  6. M.V. Berry, Regular and irregular semiclassical wave functions. J. Phys. A 10, 2083–2091 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  7. O. Bohigas, Random matrix theory and chaotic dynamics. In: Giannoni, M.J., Voros, A., Zinn-Justin, J. (eds.) Chaos et physique quantique, École d’été des Houches, Session LII, 1989. North-Holland, Amsterdam (1991)

    Google Scholar 

  8. J. Bourgain and E. Lindenstrauss, Entropy of quantum limits. Commun. Math. Phys. 233, 153–171 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. A. Bouzouina and S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105 (1996)

    Article  MATH  ADS  Google Scholar 

  10. A. Bouzouina and D. Robert, Uniform semi-classical estimates for the propagation of quantum observables. Duke Math. J. 111, 223–252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien. Commun. Math. Phys. 102, 497–502 (1985)

    Article  MATH  Google Scholar 

  12. D. Deutsch, Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  14. L.C. Evans and M. Zworski, Lectures on semiclassical analysis (version 0.2). Available at http://math.berkeley.edu/~zworski

  15. F. Faure and S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates. Commun. Math. Phys. 245, 201–214 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. F. Faure, S. Nonnenmacher, and S. De Bièvre, Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239, 449–492 (2003)

    Article  MATH  ADS  Google Scholar 

  17. R.B. Griffiths, Consistent Histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

    Article  MATH  ADS  Google Scholar 

  18. J.H. Hannay and M.V. Berry, Quantisation of linear maps on the torus—Fresnel diffraction by a periodic grating. Physica D 1, 267–290 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  20. D. Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus. Ann. Math. (2005, to appear)

    Google Scholar 

  21. K. Kraus, Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Kurlberg and Z. Rudnick, Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. J. 103, 47–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. (2) 122(3), 509–539 (1985)

    Article  MathSciNet  Google Scholar 

  24. E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163, 165–219 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Maassen and J.B.M. Uffink, Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161, 195–213 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. A. Schnirelman, Ergodic properties of eigenfunctions. Usp. Math. Nauk 29, 181–182 (1974)

    Google Scholar 

  28. J. Sjöstrand and M. Zworski, Asymptotic distribution of resonances for convex obstacles. Acta Math. 183, 191–253 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Słomczyński and K. Życzkowski, Quantum chaos: An entropy approach. J. Math. Phys. 35, 5674–5700 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Voros, Semiclassical ergodicity of quantum eigenstates in the Wigner representation. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Proceedings of the Volta Memorial Conference, Como, Italy, 1977. Lecture Notes Phys. vol. 93, pp. 326–333. Springer, Berlin (1979)

    Chapter  Google Scholar 

  31. S.A. Wolpert, The modulus of continuity for Γ0(m)/ℍ semi-classical limits. Commun. Math. Phys. 216, 313–323 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Anantharaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Anantharaman, N., Koch, H., Nonnenmacher, S. (2009). Entropy of Eigenfunctions. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_1

Download citation

Publish with us

Policies and ethics