Skip to main content

Myxomycete diversity and distribution from the fossil record to the present

  • Chapter
Protist Diversity and Geographical Distribution

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 8))

Abstract

The myxomycetes (plasmodial slime molds or myxogastrids) are a group of eukaryotic microorganisms usually present and sometimes abundant in terrestrial ecosystems. Evidence from molecular studies suggests that the myxomycetes have a significant evolutionary history. However, due to the fragile nature of the fruiting body, fossil records of the group are exceedingly rare. Although most myxomycetes are thought to have very large distributional ranges and many species appear to be cosmopolitan or nearly so, results from recent studies have provided evidence that spatial distribution patterns of these organisms can be successfully related to (1) differences in climate and/or vegetation on a global scale and (2) the ecological differences that exist for particular habitats on a local scale. A detailed examination of the global distribution of four examples (Barbeyella minutissima, Ceratiomyxa morchella, Leocarpus fragilis and Protophysarum phloiogenum) demonstrates that these species have recognizable distribution patterns in spite of the theoretical ability of their spores to bridge continents.

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulos CJ (1963) The myxomycetes II. Bot Rev 29:1–78

    Article  Google Scholar 

  • Alexopoulos CJ (1964) The rapid sporulation of some myxomycetes in moist chamber culture. Southwestern Nat 9:155–159

    Article  Google Scholar 

  • Alexopoulos CJ (1970) Rain forest myxomycetes. In: Odum HT (ed) A tropical rain forest. United States Atomic Energy Commission, Washington, DC, pp F21–F23

    Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert J et al (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). PNAS 94:12007–12012

    Article  PubMed  CAS  Google Scholar 

  • Berkeley MJ (1857) Introduction to cryptogamic botany. Bailliere, London

    Google Scholar 

  • Blackwell M, Alexopoulos CJ (1975) Taxonomic studies in the Myxomycetes IV. Protophysarum phloiogenum, a new genus and species of Physaraceae. Mycologia 67:32–37

    Article  Google Scholar 

  • Blackwell M, Gilbertson RL (1980) Sonoran desert myxomycetes. Mycotaxon 11:139–149

    Google Scholar 

  • Castillo A, Illana C, Moreno G (1998) Protophysarum phloiogenum and a new family in the Physarales. Mycol Res 102:838–842

    Article  Google Scholar 

  • Clark J (2000) The species problem in the myxomycetes. Stapfia 73:39–53

    Google Scholar 

  • Clark J, Stephenson SL (2000) Biosystematics of the myxomycete Physarum melleum. Nova Hedwigia 71:161–164

    Google Scholar 

  • Collins OR (1980) Apomictic-heterothallic conversion in a myxomycete, Didymium iridis. Mycologia 72:1109–1116

    Article  Google Scholar 

  • Collins OR (1981) Myxomycete genetics, 1960–1981. J Elisha Mitchell Sci Soc 97:101–125

    Google Scholar 

  • Domke W (1952) Der erste sichere Fund eines Myxomyceten im Baltischen Bernstein (Stemonitis splendens Rost Fa Succini fa Nov Foss). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 21:154–161

    Google Scholar 

  • Dörfelt H, Schmidt AR, Ullmann P et al (2003) The oldest fossil myxogastroid slime mold. Mycol Res 107:123–126

    Article  PubMed  Google Scholar 

  • El Hage N, Little C, Clark L et al (2000) Biosystematics of Didymium squamulosum. Mycologia 92:54–64

    Article  Google Scholar 

  • Eliasson UH (1981) Patterns of occurrence of myxomycetes in a spruce forest in south Sweden. Holarctic Ecology 4:20–31

    Google Scholar 

  • Eliasson UH (1991) The myxomycete biota of the Hawaiian Islands. Mycol Res 95:257–267

    Article  Google Scholar 

  • Eliasson UH, Lundqvist N (1979) Fimicolous myxomycetes. Bot Not 132:551–568

    Google Scholar 

  • Eliasson UH, Keller HW (1999) Coprophilous myxomycetes: updated summary, key to species, and taxonomic observations on Trichia brunnea, Arcyria elaterensis, and Arcyria stipata. Karstenia 39:1–10

    Google Scholar 

  • Farr ML (1976) Myxomycetes. Flora Neotropica, Monograph 16. New York Botanical Garden, New York

    Google Scholar 

  • Feest A (1987) The quantitative ecology of soil Mycetozoa. Prog Protist 2:331–361

    Google Scholar 

  • Feest A, Madelin MF (1985) A method for the enumeration of myxomycetes in soils and its application to a wide range of soils. FEMSW Microbiol Ecol 31:103–109

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bio Science 54:777–784

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryotic species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Fiore-Donno A-M, Berney C, Pawlowski J et al (2005) Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor 1-A and small subunit rRNA gene sequences. J Eukaryot Microbiol 52:1–10

    Article  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protests. Acta Protozool 45:111–136

    Google Scholar 

  • Gilbert HC, Martin GW (1933) Myxomycetes found on the bark of living trees. Univ Iowa Stud Nat Hist 15:3–8

    Google Scholar 

  • Graham A (1971) The role of Myxomyceta spores in palynology (with a brief note on the morphology of certain algal zygospores). Review Palaeobot Palynol 11:89–99

    Article  Google Scholar 

  • Griffin DW, Kellogg CA, Shinn EA (2001) Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Glob Change Hum Health 2:20–33

    Article  Google Scholar 

  • Griffin DW, Kellogg CA, Garrison VH et al (2002) The global transport of dust. Am Scientist 90:230–237

    Google Scholar 

  • Härkönen M (1977) Corticolous myxomycetes in three different habitats in southern Finland. Karstenia 17:19–32

    Google Scholar 

  • Härkönen M (1981) Myxomycetes developed on litter of common Finnish trees in moist chamber cultures. Nordic J Bot 1:791–794

    Article  Google Scholar 

  • Hudson HJ (1986) Fungal biology. Edward Arnold, Baltimore, Maryland

    Google Scholar 

  • Hutchinson GE (1951) Copepodology for the ornithologist. Ecology 32:571–577

    Article  Google Scholar 

  • Irawan B, Clark J, Stephenson SL (2000) Biosystematics of the Physarum compressum morphospecies. Mycologia 92:884–893

    Article  CAS  Google Scholar 

  • Kalyanasundaram I (1997) Myxomycetes in the tropics: distribution and ecology. In: Janardhanan KK, Rajendran C, Natarajan K, Hawksworth DL (eds) Tropical mycology. Science Publishers Inc, Enfield, New Hampshire, pp 227–237

    Google Scholar 

  • Keller HW, Brooks TE (1976) Corticolous myxomycetes V: observations on the genus Echinostelium. Mycologia 68:1204–1220

    Article  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  PubMed  Google Scholar 

  • Kerr SJ (1994) Frequency of recovery of myxomycetes from soils of the northern United States. Canad J Bot 72:771–778

    Article  Google Scholar 

  • Kowalski DT (1967) Observations on the Dianemaceae. Mycologia 59:1075–1084

    Article  Google Scholar 

  • Kowalski DT (1970) The species of Lamproderma. Mycologia 62:621–672

    Article  PubMed  CAS  Google Scholar 

  • Kowalski DT (1971) The genus Lepidoderma. Mycologia 63:490–516

    Article  Google Scholar 

  • Lado C (2001) Nomenmyx. A nomenclatural taxabase of Myxomycetes. Cuadernos de Trabajo Flora Micológica Ibérica 16:1–221

    Google Scholar 

  • Madelin MF (1984) Myxomycetes, microorganisms and animals: a model of diversity in animal-microbial interactions. In: Anderson JN, Rayner ADA, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, New York, pp 1–33

    Google Scholar 

  • Madelin MF (1990) Methods for studying the ecology and population dynamics of soil myxomycetes. Meth Microbiol 22:405–416

    Article  Google Scholar 

  • Martin GW, Alexopoulos CJ (1969) The Myxomycetes. Univ of Iowa Press, Iowa City

    Google Scholar 

  • Martin GW, Alexopoulos CJ, Farr ML (1983) The genera of myxomycetes. Univ of Iowa Press, Iowa City

    Google Scholar 

  • Mayr E (1970) Population, species, and evolution. Belknap Press, Harvard Univ Press, Cambridge

    Google Scholar 

  • Meier FC, Lindbergh CA (1935) Collecting micro-organisms from the Arctic atmosphere. Sci Mon 40:5–20

    Google Scholar 

  • Mitchell DW (1980) A Key to the corticolous Myxomycetes. The British Mycological Society, Cambridge, England

    Google Scholar 

  • Mosquera J, Lado C, Beltrán-Tejera E (2000) Morphology and ecology of Didymium subreticulosporum. Mycologia 92:978–983

    Article  Google Scholar 

  • Muñoz J, Felicisimo AM, Cabezas F et al (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–1147

    Article  PubMed  Google Scholar 

  • Nannenga–Bremekamp NE (1989) Notes on myxomycetes XXIII. Seven new species of Myxomycetes. Proc Koninkl Nederl Akad Wet C 92:505–515

    Google Scholar 

  • Neubert H, Nowotny W, Baumann K (1993) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. Band 1 Ceratiomyxales, Echinosteliales, Liceales, Trichales. Baumann, Gomaringen, Germany

    Google Scholar 

  • Novozhilov YK, Schnittler M, Stephenson SL (1998) Analysis of myxomycete diversity of Russian subarctic and arctic areas. Mikol Fitopatol 32:27–33

    Google Scholar 

  • Novozhilov YK, Schnittler M, Stephenson SL (1999) Myxomycetes of the Taimyr Peninsula (north–central Siberia). Karstenia 39:77–97

    Google Scholar 

  • Olive LS (1970) The Mycetozoa: a revised classification. Bot Rev 36:59–87

    Article  Google Scholar 

  • Olive LS (1975) The Mycetozoans. Academic Press, New York

    Google Scholar 

  • Olive LS, Stoianovitch C (1979) Observations of the mycetozoan genus Ceratiomyxa: description of a new species. Mycologia 71:546–555

    Article  Google Scholar 

  • Pando F et al (2003) MA Cryptogamic collections online databases. http://wwwrjbcsices/herbario/crypto/crydbhtm. Cited 01 Jan 2007

  • Poole AL, Adams NM (1990) Trees and shrubs of New Zealand. DSIR Publishing, Wellington, New Zealand

    Google Scholar 

  • Schnittler M (2000) Foliicolous liverworts as a microhabitat for Neotropical myxomycetes. Nova Hedwigia 72:259–270

    Google Scholar 

  • Schnittler M (2001) Ecology of myxomycetes of a winter-cold desert in western Kazakhstan. Mycologia 93:653–669

    Article  Google Scholar 

  • Schnittler M, Mitchell DW (2000) Species diversity in myxomycetes based on the morphological species concept – a critical examination. Stapfia 73:55–62

    Google Scholar 

  • Schnittler M, Novozhilov YK (1996) The myxomycetes of boreal woodlands in Russian northern Karelia: a preliminary report. Karstenia 36:19–40

    Google Scholar 

  • Schnittler M, Novozhilov YK (2000) Myxomycetes of the winter-cold desert in western Kazakhstan. Mycotaxon 74:267–285

    Google Scholar 

  • Schnittler M, Stephenson SL (2000) Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia 92:626–637

    Article  Google Scholar 

  • Schnittler M, Stephenson SL (2001) Inflorescences of Neotropical herbs as a new microhabitat for myxomycetes. Mycologia 94:6–20

    Article  Google Scholar 

  • Schnittler M, Lado C, Stephenson SL (2002) Rapid biodiversity assessment of a tropical myxomycete assemblage – Maquipucuna Cloud Forest Reserve, Ecuador. Fungal Divers 9:135–167

    Google Scholar 

  • Schnittler M, Stephenson SL, Novozhilov YK (2000) Ecology and world distribution of Barbeyella minutissima (Myxomycetes). Mycol Res 104:1518–1523

    Article  Google Scholar 

  • Stephenson SL (1988) Distribution and ecology of myxomycetes in temperate forests I. Patterns of occurrence in the upland forests of southwestern Virginia. Can J Bot 66:2187–2207

    Google Scholar 

  • Stephenson SL (1989) Distribution and ecology of myxomycetes in temperate forests II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia 81:608–621

    Article  Google Scholar 

  • Stephenson SL (2003) Myxomycetes associated with decaying fronds of Nikau palm (Rhopalostylis sapida) in New Zealand. NZ J Bot 41:311–317

    Google Scholar 

  • Stephenson SL (2004) Distribution and ecology of myxomycetes in southern Appalachian subalpine coniferous forests. In: Cribbs CL (ed) Fungi in forest ecosystems: diversity, ecology, and systematics. New York Botanical Garden, Bronx, pp 203–212

    Google Scholar 

  • Stephenson SL, Cavender JC (1996) Dictyostelids and myxomycetes. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Oxon, UK, pp 91–101

    Google Scholar 

  • Stephenson SL, Estrada-Torres A, Schnittler M et al (2001) Distribution and ecology of myxomycetes in the forests of Yucatan. In: Gómez–Pompa A, Allen M, Fedick S et al (eds) Lowland Maya area: three millennia at the human–wildland interface. Haworth Press, New York

    Google Scholar 

  • Stephenson SL, Kalyanasundaram I, Lakhanpal TN (1993) A comparative biogeographical study of myxomycetes in the mid-Appalachians of eastern North America and two regions of India. J Biogeogr 20:645–657

    Article  Google Scholar 

  • Stephenson SL, Landolt JC (1996) The vertical distribution of dictyostelids and myxomycetes in the soil/litter microhabitat. Nova Hedwigia 62:105–117

    Google Scholar 

  • Stephenson SL, Landolt JC (1998) Dictyostelid cellular slime molds in canopy soils of tropical forests. Biotropica 30:657–661

    Article  Google Scholar 

  • Stephenson SL, Landolt JC, Moore DL (1999) Protostelids, dictyostelids, and myxomycetes in the litter microhabitat of the Luquillo experimental forest, Puerto Rico. Mycol Res 103:209–214

    Article  Google Scholar 

  • Stephenson SL, Laursen GA (1993) A preliminary report on the distribution and ecology of myxomycetes in Alaskan tundra. Biblthca mycol 150:251–257

    Google Scholar 

  • Stephenson SL, Laursen GA (1998) Myxomycetes from Alaska. Nova Hedwigia 66:425–434

    Google Scholar 

  • Stephenson SL, Laursen GA, Seppelt RD (2007) Myxomycetes of subantarctic Macquarie Island. Austral J Bot (in press)

    Google Scholar 

  • Stephenson SL, Moreno G (2006) A new species of Didymium (Myxomycetes) from subantarctic Macquarie Island. Mycol Progr 5:255–258

    Article  Google Scholar 

  • Stephenson SL, Novozhilov YK, Schnittler M (2000) Distribution and ecology of myxomycetes in high-latitude regions of the northern hemisphere. J Biogeogr 27:741–754

    Article  Google Scholar 

  • Stephenson SL, Schnittler M, Lado C et al (2004) Studies of Neotropical mycetozoans. Syst Geogr Plants 74:87–108

    Google Scholar 

  • Stephenson SL, Stempen H (1994) Myxomycetes: a handbook of slime molds. Timber Press, Portland, Oregon

    Google Scholar 

  • Stephenson SL, Studlar SM (1985) Myxomycetes fruiting upon bryophytes: coincidence or preference? J Bryology 13:537–548

    Google Scholar 

  • Swap R, Garstang M, Greco S et al (1996) Saharan dust in the Amazon Basin. Tellus 44:133–149

    Google Scholar 

  • Thom C, Raper KD (1930) Myxamoebae in soil and decomposing crop residues. J Wash Acad Sci 20:362–370

    Google Scholar 

  • Waggoner BM, Poinar GO Jr (1992) A fossil myxomycete plasmodium from Eocene-Oligocene amber of the Dominican Republic. J Euk Microbiol 39:639–642

    Google Scholar 

  • Wrigley de Basanta D (2000) Acid deposition in Madrid and corticolous myxomycetes. Stapfia 73:113–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schnittler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stephenson, S.L., Schnittler, M., Novozhilov, Y.K. (2007). Myxomycete diversity and distribution from the fossil record to the present. In: Foissner, W., Hawksworth, D.L. (eds) Protist Diversity and Geographical Distribution. Topics in Biodiversity and Conservation, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2801-3_5

Download citation

Publish with us

Policies and ethics