Skip to main content

The “Tetrahymena pyriformis” complex of cryptic species

  • Chapter
Protist Diversity and Geographical Distribution

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 8))

Abstract

Cryptic species are common among protists and have long been known in ciliates. The ciliate genus Tetrahymena contains a large group of morphologically indistinguishable species referred to as the ‘T. pyriformis’ complex. These species include those reproductively isolated by mating type as well as asexual species characterized by the absence of the germinal micronucleus. This paper examines the molecular diversity of the species and describes the biogeography of ‘T. pyriformis’ species. Most species are globally distributed, though the best studied species, T. thermophila, is confined to North America and gives evidence of population structure in local populations. Selfers and asexual species are common and arise from sexual species, a possible exploitation of nuclear dimorphism. It is argued that the cryptic species likely have different ecological roles and that the biodiversity of Tetrahymena in particular, and ciliates in general, is underestimated.

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

COX1:

Cytochrome oxidase 1 subunit

CT:

Connecticut

D2:

A hypervariable region of LSU

FL:

Florida

IL:

Illinois

LSU:

Large ribosomal subunit

MA:

Massachusetts

ME:

Maine

MI:

Michigan

PA:

Pennsylvania

NH:

New Hampshire

NW PA:

North West Pennsylvania

RRNA:

Ribosomal RNA

VT:

Vermont

References

  • Allen SL (1967) Cytogenetics of genomic exclusion in Tetrahymena. Genetics 55:797–882

    PubMed  CAS  Google Scholar 

  • Asai DJ, Forney JD (eds) (2000) Tetrahymena thermophila. Academic Press, San Diego

    Google Scholar 

  • Batson BS (1983) Tetrahymena dimorpha sp. nov. (Hymenostomatida: Tetrahymenidae), a new ciliate parasite of Simuliidae (Diptera) with potential as a model for the study of ciliate morphogenesis. Phil Trans R Soc Lond 301:345–363

    Article  Google Scholar 

  • Batson BS (1985) A paradigm for the study of insect-ciliate relationships:Tetrahymena sialidos sp. nov. (Hymenostomatida: Tetrahymenidae), parasite of larval Sialis lutaria (Linn.) (Megaloptera: Sialidae). Phil Trans R Soc Lond 310:123–144

    Article  Google Scholar 

  • Borden D, Whitt GS, Nanney DL (1973a) Electrophoretic characterization of classical Tetrahymena pyriformis strains. J Protozool 20:693–700

    PubMed  CAS  Google Scholar 

  • Borden D, Whitt GS, Nanney DL (1973b) Isozymic heterogeneity in Tetrahymena strains. Science 181:279–280

    Article  PubMed  CAS  Google Scholar 

  • Brooks WM (1968) Tetrahymenid ciliates as parasites of the gray garden slug. Hilgardia 39:205–276

    Google Scholar 

  • Brunk CF, Kahn RW, Sadler LA (1990) Phylogenetic relationships among Tetrahymena species determined using the polymerase chain reaction. J Mol Evol 30:290–297

    Article  PubMed  CAS  Google Scholar 

  • Chao A, Li PC, Agatha S et al (2006) A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114:479–493

    Article  Google Scholar 

  • Chase JM, Abrams PA, Grover JP et al (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Article  Google Scholar 

  • Chen ZG, Song WB, Warren A (2003) Species separation and identification of Uronychia spp. (Hypotrichia:Ciliophora) using RAPD fingerprinting and ARDRA riboprinting. Acta Protozool 42:83–90

    CAS  Google Scholar 

  • Corliss JO (1952a) Comparative studies on holotrichous ciliates in the Colpidium-Glaucoma-Leucophyrs-Tetrahymena group. I. General considerations and history of strains in pure culture. Trans Am Microsc Soc 71:159–184

    Article  Google Scholar 

  • Corliss JO (1952b) Le cycle autogamique de Tetrahymena rostrata. C R Acad Sci Paris 235:399–402

    PubMed  CAS  Google Scholar 

  • Corliss JO (1957) Tetrahymena paravorax n. sp., the first caudal-ciliated member of the genus referable to the vorax-patula complex. J Protozool 4:13

    Google Scholar 

  • Corliss JO (1960) Tetrahymena chironomi sp. nov., a ciliate from midge larvae, and the current status of facultative parasitism in the genus Tetrahymena. Parasitology 50:111–153

    Article  PubMed  CAS  Google Scholar 

  • Corliss JO (1961) Natural infection of tropical mosquitoes by ciliated protozoa of the genus Tetrahymena. Trans Roy Soc Trop Med Hyg 55:149–152

    Article  PubMed  CAS  Google Scholar 

  • Corliss JO (1973) History, taxonomy, ecology, and evolution of species of Tetrahymena. In: Elliott AM (ed) Biology of Tetrahymena. Dowden. Hutchinson & Ross, Stroudsburg, pp 1–55

    Google Scholar 

  • Corliss JO, Coats DW (1976) A new cuticular cyst-producing tetrahymenid ciliate, Lambornella clarki n. sp., and the current status of ciliatosis in culicine mosquitoes. Trans Am Microsc Soc 95:725–739

    Article  Google Scholar 

  • Corliss JO, Daggett PM (1983) Paramecium aurelia and Tetrahymena pyriformis—current status of the taxonomy and nomenclature of these popularly known and widely used ciliates. Protistologica 19:307–322

    Google Scholar 

  • Corliss JO, Smith AC, Foullres J (1962) A species of Tetrahymena from the British garden slug Milax budapestensis. Nature 196:1008–1009

    Article  Google Scholar 

  • Creach V, Ernst A, Sabbe K et al (2006) Using quantitative PCR to determine the distribution of a semicryptic benthic diatom, Navicula phyllepta (Bacillariophyceae). J Phycol 42:1142–1154

    Article  CAS  Google Scholar 

  • Dini F, Nyberg D (1993) Sex in ciliates. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, pp 85–154

    Google Scholar 

  • Dini F, Nyberg D (1999) Growth rates of marine ciliates on diverse organisms reveal ecological specializations within morphospecies. Microb Ecol 37:13–22

    Article  PubMed  Google Scholar 

  • Doerder FP, Deak JC, Lief JH (1992) Rate of phenotypic assortment in Tetrahymena thermophila. Dev Genet 13:126–132

    Article  PubMed  CAS  Google Scholar 

  • Doerder FP, Gates MA, Eberhardt FP et al (1995) High frequency of sex and equal frequencies of mating types in natural populations of Tetrahymena thermophila. Proc Natl Acad Sci USA 92:8715–8718

    Article  PubMed  CAS  Google Scholar 

  • Doerder FP, Arslanyolu M, Saad Y et al (1996) Ecological genetics of Tetrahymena thermophila: mating types, i-antigens, multiple alleles and epistasis. J Eukaryot Microbiol 43:95–100

    Article  CAS  Google Scholar 

  • Egerter DE, Anderson JR (1985) Infection of the western treehole mosquito, Aedes sierrensis (Diptera: Culcidae) with Lambornella clarki (Ciliophora: Tetrahymenidae). J Invert Path 46:296–304

    Article  Google Scholar 

  • Eisen JA, Coyne RS, Wu M et al (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PloS Biol 4:1620–1642

    Article  CAS  Google Scholar 

  • Elliott AM (1973a) Biology of Tetrahymena. Dowden, Hutchinson & Ross, Stroudsburg, PA

    Google Scholar 

  • Elliott AM (1973b) Life cycle and distribution of Tetrahymena. In: Elliott AM (ed) Biology of Tetrahymena. Dowden, Hutchinson & Ross, Stroudsburg, PA, pp 259–286

    Google Scholar 

  • Elliott AM, Kennedy JR (1973) Morphology of Tetrahymena. In: Elliott AM (ed) Biology of Tetrahymena. Dowden, Hutchinson & Ross, Stroudsburg PA, pp 57–87

    Google Scholar 

  • Elliott AM, Nanney DL (1952) Conjugation in Tetrahymena. Science 116:33–34

    Article  PubMed  Google Scholar 

  • Fawley MW, Dean ML, Dimmer SK et al (2006) Evaluating the morphospecies concept in the Selenastraceae (Chlorophyceae, Chlorophyta). J Phycol 42:142–154

    Article  Google Scholar 

  • Feng XL, Sun Q, Cao TG et al (1988) The S1 strain of Tetrahymena from Shanghai - Tetrahymena shanghaiensis sp-nov. Acta Zool Sin 34:42–51

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–244

    Article  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF, Fenchel T (2004) Protist diversity is different? Protist 155:15–22

    Article  PubMed  Google Scholar 

  • Foissner W (1988) Taxonomic and nomenclatural revision of Sladecek list of ciliates (Protozoa, Ciliophora) as indicators of water quality. Hydrobiologia 166:1–64

    Article  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of microorganisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Foissner W, Berger H (1999) Identification and ontogenesis of the nomen nudum Hypotrichs (Protozoa: Ciliophora) Oxytricha nova (= Sterkiella nova sp n.) and O. trifallax (= S. histriomuscorum). Acta Protozool 38:215–248

    Google Scholar 

  • Fokin S, Stoeck T, Schmidt H (1999) Paramecium duboscqui Chatton, Brachon, 1933. Distribution, ecology and taxonomy. Eur J Protistol 35:161–167

    Google Scholar 

  • Frankel J (2000) Cell biology of Tetrahymena thermophila. Methods Cell Biol 62:27–125

    Article  PubMed  CAS  Google Scholar 

  • Furgason WH (1940) The significant cytostomal pattern of the Glaucoma-Colpidium group, and a proposed new genus and species, Tetrahymena geleii. Arch Protistenk 94:224–266

    Google Scholar 

  • Gall J (1986) The molecular biology of ciliated protozoa. Academic Press, Orlando

    Google Scholar 

  • Gates MA, Berger J (1974) A biometric study of three stains of Tetrahymena pyriformis (Ciliatea: Hymenostomatida). Can J Zool 52:1167–1183

    Article  PubMed  CAS  Google Scholar 

  • Gerber CA, Lopez AB, Shook SJ et al (2002) Polymorphism and selection at the SerH immobilization antigen locus in natural populations of Tetrahymena thermophila. Genetics 160:1469–1479

    PubMed  CAS  Google Scholar 

  • Golini VI, Corliss JO (1981) A note on the occurrence of the hymenostome ciliate Tetrahymena in chironomid larvae (Diptera: Chironomidae) from the Laurentian Great Lakes. Trans Am Microsc Soc 100:89–93

    Article  Google Scholar 

  • Haentzsch M, Schmidt SL, Bernhard D et al (2006) A PCR-based method to distinguish the sibling species Stylonychia mytilus and Stylonychia lemnae (Ciliophora, Spirotrichea) using isocitrate dehydrogenase gene sequences. J Eukaryot Microbiol 53:343–347

    Article  PubMed  CAS  Google Scholar 

  • Hausmann K, Selchow P, Scheckenbach F et al (2006) Cryptic species in a morphospecies complex of heterotrophic flagellates: the case study of Caecitellus spp. Acta Protozool 45:415–431

    Google Scholar 

  • Hill DL (1972) The biochemistry and physiology of Tetrahymena. Academic Press, New York

    Google Scholar 

  • Hoffman GL, Landolt M, Camper JE et al (1975) A disease of freshwater fishes caused by Tetrahymena corlissi Thompson, 1955, and a key for identification of holotrich ciliates of freshwater fishes. J Parasitol 61:217–223

    Article  PubMed  CAS  Google Scholar 

  • Holz GG Jr, Corliss JO (1956) Tetrahymena setifera n. sp., a member of the genus Tetrahymena with a caudal cilium. J Protozool 3:112–118

    Google Scholar 

  • Huvos PE (1995) Developmental DNA rearrangements and micronucleus-specific sequences in five species within the Tetrahymena pyriformis species complex. Genetics 141:925–936

    PubMed  CAS  Google Scholar 

  • Huvos PE (2007) Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis. J Eukaryot Microbiol 54:73–82

    Article  PubMed  CAS  Google Scholar 

  • Jerome CA, Lynn DH (1996) Identifying and distinguishing sibling species in the Tetrahymena pyriformis complex (Ciliophora, Oligohymenophorea) using PCR/RFLP analysis of nuclear ribosomal DNA. J Eukaryot Microbiol 43:492–497

    Article  PubMed  CAS  Google Scholar 

  • Jerome CA, Simon EM, Lynn DH (1996) Description of Tetrahymena empidokyrea n.sp., a new species in the Tetrahymena pyriformis sibling species complex (Ciliophora, Oligohymenophorea), and an assessment of its phylogenetic position using small-subunit rRNA sequences. Can J Zool 74:1898–1906

    Article  CAS  Google Scholar 

  • Kahl A (1926) Neue und wenig bekannte Formen der holotrichen und heterotrichen Ciliaten. Arch Protistenk 55:197–438

    Google Scholar 

  • Kaney AR, Speare VJ (1983) An amicronucleate mutant of Tetrahymena thermophila. Exp Cell Res 143:461–467

    Article  PubMed  CAS  Google Scholar 

  • Karrer K, Stein-Gavens S, Allitto BA (1984) Micronucleus-specific DNA sequences in an amicronucleate mutant of Tetrahymena. Dev Biol 105:121–129

    Article  PubMed  CAS  Google Scholar 

  • Kidder GW (1940) Growth studies on ciliates IV The influence of food on the structure and growth or Glaucoma vorax sp. nov. Biol Bull 78:9–23

    Article  Google Scholar 

  • Kozloff EN (1946) The morphology and systematic position of a holotrichous ciliate parasitizing Deroceras agreste (L.). J Morphol 79:445–465

    Article  Google Scholar 

  • Kozloff EN (1957) A species of Tetrahymena parasitic in the renal organ of the slug Deroceras reticulatum. J Protozool 4:75–79

    Google Scholar 

  • Loefer JB, Owen RD, Christensen E (1958) Serological types among thirty-one strains of the ciliated protozoan Tetrahymena pyriformis. J Protozool 5:209–217

    Google Scholar 

  • Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C et al (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603

    Article  PubMed  CAS  Google Scholar 

  • Lwoff A (1923) Sur la nutrition des infusoires. C R Acad Sci Paris 176:928–930

    CAS  Google Scholar 

  • Lynn DH, Molloy D, LeBrun R (1981) Tetrahymena rotunda n. sp. (Hymenostomatida: Tetrahymenidae), a ciliate parasite of the homolymph of Simulium (Diptera: Simuliidae). Trans Am Microsc Soc 100:134–141

    Article  Google Scholar 

  • Lynn DH, Struder-Kypke MC (2006) Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase I gene sequences. J Eukaryot Microbiol 53:385–387

    Article  PubMed  CAS  Google Scholar 

  • Lynn DH, Gransden SG, Wright A-DG et al (2000) Characterization of a new species of the ciliate Tetrahymena (Ciliophora: Oligohymenophorea) isolated from the urine of a dog: first report of Tetrahymena from a mammal. Acta Protozool 39:289–294

    Google Scholar 

  • Maciejewska A (2006) Sibling species within Paramecium jenningsi revealed by PCR-RFLP. Acta Protozool 45:387–393

    CAS  Google Scholar 

  • Margolin P, Loefer JB, Owen RD (1959) Immobilizing antigens of Tetrahymena pyriformis. J Protozool 6:207–215

    Google Scholar 

  • Massana R, Balague V, Guillou L et al (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  Google Scholar 

  • McCoy JW (1975) Updating the Tetrahymenids. III. Natural variation in Tetrahymena setosa nov. comb. Acta Protozool 14:253–262

    Google Scholar 

  • Meyer EB, Nanney DL (1987) Isozymes in the ciliated protozoan Tetrahymena. In: Rattazzi MC et al (eds) Isozymes in the biological and medical sciences. A. R. Liss, New York, pp 61–101

    Google Scholar 

  • Mollenbeck M (1999) Genetic relationship of 32 cell lines of the Euplotes octocarinatus species complex revealed by random amplified polymorphic DNA (RAPD) fingerprinting. Mol Ecol 8:1971–1979

    Article  CAS  Google Scholar 

  • Moreira D, Lopez-Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trend Microbiol 10:31–38

    Article  CAS  Google Scholar 

  • Muspratt J (1945) Observations on the larvae of tree-hole breeding Culicini (Diptera: Culicidae) and two of their parasites. J Entomol Soc S Afr 8:13–20

    Google Scholar 

  • Nanney DL (1957) Inbreeding degeneration in Tetrahymena. Genetics 42:137–146

    PubMed  CAS  Google Scholar 

  • Nanney DL (1967) Comparative corticotype analyses in Tetrahymena. J Protozool 14:690–697

    Google Scholar 

  • Nanney DL (1982) Genes and phenes in Tetrahymena. BioScience 32:783–788

    Article  Google Scholar 

  • Nanney DL, Caughey PA, Tefankjian A (1955) The genetic control of mating type potentialities in Tetrahymena pyriformis. Genetics 40:668–680

    PubMed  CAS  Google Scholar 

  • Nanney DL, McCoy JW (1976) Characterization of the species of the Tetrahymena pyriformis complex. Trans Am Microsc Soc 95:664–682

    Article  PubMed  CAS  Google Scholar 

  • Nanney DL, Park C, Preparata R et al (1998) Comparison of sequence differences in a variable 23S rRNA domain among sets of cryptic species of ciliated protozoa. J Eukaryot Microbiol 45:91–100

    Article  PubMed  CAS  Google Scholar 

  • Nyberg D (1974) Breeding systems and resistance to environmental stress in ciliates. Evolution 28:367–380

    Article  Google Scholar 

  • Nyberg D (1981a) Fertility is not a function of geographic distance in Tetrahymena. J Hered 72:94–96

    PubMed  CAS  Google Scholar 

  • Nyberg D (1981b) Three new “biological” species of Tetrahymena (T. hegewischi n. sp., T. sonneborni n. sp., T. nipissingi n. sp.) and temperature tolerance of members of the “pyriformis” complex. J Protozool 28:65–69

    Google Scholar 

  • Petroni G, Dini F, Verni F et al (2002) A molecular approach to the tangled intrageneric relationships underlying phylogeny in Euplotes (Ciliophora, Spirotrichea). Mol Phylogenet Evol 22:118–130

    Article  PubMed  CAS  Google Scholar 

  • Phillips RB (1968) Mating-type alleles in Illinois strains of Tetrahymena pyriformis, syngen 1. Genet Res (Cambridge) 11:211–214

    CAS  Google Scholar 

  • Przybos E (1986) Species structure in ciliates. Folia Biol 34:103–132

    Google Scholar 

  • Ray C Jr, Elliott AM (1954) Chromosome number of four varieties of Tetrahymena. Anat Rec 20:228

    Google Scholar 

  • Roberts CT Jr, Orias E (1973) Cytoplasmic inheritance of chloramphenicol resistance in Tetrahymena. Genetics 73:259–272

    PubMed  Google Scholar 

  • Saad Y, Doerder FP (1995) Immobilization antigen variation in natural isolates of Tetrahymena thermophila. Eur J Protistol 31:45–53

    Google Scholar 

  • Sadler LA, Brunk CF (1992) Phylogenetic relationships and unusual diversity in histone H4 proteins within the Tetrahymena-pyriformis complex. Mol Biol Evol 9:70–84

    PubMed  CAS  Google Scholar 

  • Scheckenbach F, Wylezich C, Mylnikov AP et al (2006) Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates. Appl Environ Microbiol 72:6638–6643

    Article  PubMed  CAS  Google Scholar 

  • Schlegel M, Meisterfeld R (2003) The species problem in protozoa revisited. Eur J Protistol 39:349–355

    Article  Google Scholar 

  • Schloegel JJ (1999) From anomaly to unification: Tracy Sonneborn and the species problem in protozoa, 1954–1957. J Hist Biol 32:93–132

    Article  Google Scholar 

  • Schmidt SL, Bernhard D, Schlegel M et al (2006) Fluorescence in situ hybridization with specific oligonucleotide rRNA probes distinguishes the sibling species Stylonychia lemnae and Stylonychia mytilus (Ciliophora, Spirotrichea). Protist 157:21–30

    Article  PubMed  CAS  Google Scholar 

  • Simon EM, Meyer EB (1992) Suicide is not the inevitable outcome of “perpetual” selfing in tetrahymenines collected from natural habitats. Dev Genet 13:47–52

    Article  PubMed  CAS  Google Scholar 

  • Simon EM, Meyer EB, Preparata RM (1985) New wild Tetrahymena from southeast Asia, China and North America, including T. malaccensis, T. asiatica, T. nanneyi, T. caudata, and T. silvana n. spp. J Protozool 32:183–189

    PubMed  CAS  Google Scholar 

  • Slapeta J, Moreira D, Lopze-Garcia P (2005) The extent of protist diversity:insights from molecular ecology of freshwater eukaryotes. Proc R Soc Lond 272:2073–2081

    Article  CAS  Google Scholar 

  • Slapeta J, Lopez-Garcia P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Ingold A, Karlok M et al (1986) Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the major Tetrahymena groups. EMBO J 5:3625–3630

    PubMed  CAS  Google Scholar 

  • Sonneborn TM (1937) Sex, sex inheritance and sex determination in Paramecium aurelia. Proc Natl Acad Sci USA 23:378–385

    Article  PubMed  CAS  Google Scholar 

  • Sonneborn TM (1957) Breeding systems, reproductive methods, and species problems in protozoa. In: Mayr E (ed) The species problem. AAAS, Washington, pp 155–324

    Google Scholar 

  • Stoeck T, Hayward B, Taylor GT et al (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  PubMed  CAS  Google Scholar 

  • Struder-Kypke MC, Wright AD, Jerome CA et al (2001) Parallel evolution of histophagy in ciliates of the genus Tetrahymena. BMC Evol Biol 1:5

    Article  PubMed  CAS  Google Scholar 

  • Thompson JC Jr (1955) Morphology of a new species of Tetrahymena. J Protozool 2:12

    Google Scholar 

  • Van Bell CT (1985a) 5S and 5.8S ribosomal RNA evolution in the suborder Tetrahymena (Ciliophora:Hymenostomatida). J Mol Evol 22:231–236

    Article  PubMed  Google Scholar 

  • Van Bell CT (1985b) The 5S and 5.8S ribosomal RNA sequences of Tetrahymena thermophila and T. pyriformis. J Protozool 32:640–644

    PubMed  Google Scholar 

  • Warren R (1932) On a ciliate protozoon inhabiting the liver of a slug. Ann Natal Mus 7:1–53

    Google Scholar 

  • Williams NE, Buhse HE Jr, Smith MG (1984) Protein similarities in the genus Tetrahymena and a description of Tetrahymena leucophrys n. sp. J Protozool 31:313–321

    CAS  Google Scholar 

  • Ye AJ, Romero DP (2002) Phylogenetic relationships amongst tetrahymenine ciliates inferred by a comparison of telomerase RNAs. Int J Syst Evol Microbiol 52:2297–2302

    Article  PubMed  CAS  Google Scholar 

  • Zaug AJ, Cech TR (1980) In vitro splicing of the ribosomal RNA precursor in nuclei of Tetrahymena. Cell 19:331–338

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Paul Doerder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Simon, E.M., Nanney, D.L., Doerder, F.P. (2007). The “Tetrahymena pyriformis” complex of cryptic species. In: Foissner, W., Hawksworth, D.L. (eds) Protist Diversity and Geographical Distribution. Topics in Biodiversity and Conservation, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2801-3_10

Download citation

Publish with us

Policies and ethics