Skip to main content

Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness, and micro-topography

  • Chapter
Herbaceous Plant Ecology

Abstract

Biodiversity has been declining in many areas, and there is great interest in determining whether this decline affects ecosystem functioning. Most biodiversity—ecosystem functioning studies have focused on the effects of species richness on net primary productivity. However, biodiversity encompasses both species richness and evenness, ecosystem functioning includes other important processes such as decomposition, and the effects of richness on ecosystem functioning may change at different levels of evenness. Here, we present two experiments on the effects of litter species evenness and richness on litter decomposition. In the first experiment, we varied the species evenness (three levels), identity of the dominant species (three species), and micro-topographic position (low points [gilgais] or high points between gilgais) of litter in three-species mixtures in a prairie in Texas, USA. In a second experiment, we varied the species evenness (three levels), richness (one, two, or four species per bag), and composition (random draws) of litter in a prairie in Iowa, USA. Greater species evenness significantly increased decomposition, but this effect was dependent on the environmental context. Higher evenness increased decomposition rates only under conditions of higher water availability (in gilgais in the first experiment) or during the earliest stages of decomposition (second experiment). Species richness had no significant effect on decomposition, nor did it interact with evenness. Micro-topographic position and species identity and composition had larger effects on decomposition than species evenness. These results suggest that the effects of litter species diversity on decomposition are more likely to be manifested through the evenness component of diversity than the richness component, and that diversity effects are likely to be environmentally context dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarssen LW (1997) High productivity in grassland ecosystems: effected by species diversity or productive species? Oikos 80:183–184. doi:10.2307/3546531

    Article  Google Scholar 

  • Aumen NG (1980) Microbial succession on a chitinous substrate in a woodland stream. Microb Ecol 6:317–327. doi:10.1007/BF02010494

    Article  Google Scholar 

  • Benner R, Newell SY, Maccubbin AE, Hodson RE (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl Environ Microbiol 48:36–40

    PubMed  CAS  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of Scots Pine needle litter. II. Influence of chemical composition. In: Persson T (ed) Structure and function of northern coniferous forests. Ecological bulletins, vol 32. Stockholm, Sweden, pp 373–390

    Google Scholar 

  • Blair JM, Parmelee RW, Beare MH (1990) Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed-species foliar litter. Ecology 71:1976–1985. doi:10.2307/1937606

    Article  Google Scholar 

  • Boyero L, Pearson RG, Bastian M (2007) How biological diversity influences ecosystem function: a test with a tropical stream detritivore guild. Ecol Res 22:551–558. doi:10.1007/s11284-006-0303-6

    Article  Google Scholar 

  • Chapela IH, Boddy L (1988) The fate of early fungal colonizers in beech branches decomposing on the forest floor. FEMS Microbiol Ecol 53:273–284. doi:10.1111/j.1574-6968.1988.tb02674.x

    Article  Google Scholar 

  • Dangles O, Malmqvist B (2004) Species richness-decomposition relationships depend on species dominance. Ecol Lett 7:395–402. doi:10.1111/j.1461-0248.2004.00591.x

    Article  Google Scholar 

  • Diggs GM Jr, Lipscomb BL, O’Kennon RJ (1999) Shinners and Mahler’s illustrated flora of north central Texas. Botanical Research Institute of Texas, Fort Worth, TX, USA

    Google Scholar 

  • Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151:264–276. doi:10.1086/286117

    Article  PubMed  CAS  Google Scholar 

  • Edelman CH, Brinkman R (1962) Physiography of gilgai soils. Soil Sci 94:366–370. doi:10.1097/00010694-196212000-00003

    Article  Google Scholar 

  • Eilers LJ, Roosa DM (1994) The vascular plants of Iowa: an annotated checklist and natural history. University of Iowa Press, Iowa City, IA, USA

    Google Scholar 

  • Emery SM, Gross KL (2006) Dominant species identity regulates invasibility of old-field plant communities. Oikos 115:549–558. doi:10.1111/j.2006.0030-1299.15172.x

    Article  Google Scholar 

  • Engle DM, Stritzke JF, Bidwell TG, Claypool PL (1993) Late-summer fire and follow-up herbicide treatments in tallgrass prairie. J Range Manag 46:542–547. doi:10.2307/4002869

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi:10.1111/j.0030-1299.2004.12738.x

    Article  Google Scholar 

  • Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371. doi:10.1034/j.1600-0706.2000.900217.x

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. doi:10.1890/07-1053.1

    Article  PubMed  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522. doi:10.2307/2963492

    Article  Google Scholar 

  • Hooper DU, Dukes JS (2004) Overyielding among plant functional groups in a long-term experiment. Ecol Lett 7:95–105. doi:10.1046/j.1461-0248.2003.00555.x

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305. doi:10.1126/science.277.5330.1302

    Article  CAS  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 108:449–460. doi:10.1007/s004420050180

    Article  Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140. doi:10.2307/1942528

    Article  Google Scholar 

  • King RF, Dromph KM, Bardgett RD (2002) Changes in species evenness of litter have no effect on decomposition processes. Soil Biol Biochem 34:1959–1963. doi:10.1016/S0038-0717(02)00204-3

    Article  CAS  Google Scholar 

  • Kirwan L, LĂĽscher A, SebastiĂ  MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, DalmannsdĂłttir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, Höglind M, Huguenin-Elie O, Iliadis C, Jørgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smit HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539. doi:10.1111/j.1365-2745.2007.01225.x

    Article  Google Scholar 

  • Knops JMH, Wedin D, Tilman D (2001) Biodiversity and decomposition in experimental grassland ecosystems. Oecologia 126:429–433. doi:10.1007/s004420000537

    Article  Google Scholar 

  • Littell RC, Stroup WW, Freund RJ (2002) SAS for linear models. SAS Institute Inc., Cary, NC, USA

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, New York

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  PubMed  CAS  Google Scholar 

  • Losure DA, Wilsey BJ, Moloney KA (2007) Evenness-invasibility relationships differ between two extinction scenarios in tallgrass prairie. Oikos 116:87–98. doi:10.1111/j.2006.0030-1299.15341.x

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • McKie BG, Woodward G, Hladyz S, Nistorescu M, Preda E, Popescu C, Giller PS, Malmqvist B (2008) Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J Anim Ecol 77:495–504. doi:10.1111/j.1365-2656.2008.01357.x

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780

    Article  CAS  Google Scholar 

  • Minderman G (1968) Addition, decomposition and accumulation of organic matter in forests. J Ecol 56:355–362. doi:10.2307/2258238

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B, Prescott C, CamirĂ© C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999) Litter decomposition rates in Canadian forests. Glob Chang Biol 5:75–82. doi:10.1046/j.1365-2486.1998.00224.x

    Article  Google Scholar 

  • Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63. doi:10.1111/j.0030-1299.2004.13110.x

    Article  Google Scholar 

  • Nijs I, Roy J (2000) How important are species richness, species evenness and interspecific differences to productivity? A mathematical model. Oikos 88:57–66. doi:10.1034/j.1600-0706.2000.880107.x

    Article  Google Scholar 

  • Polley HW, Derner JD, Wilsey BJ (2005) Patterns of plant species diversity in remnant and restored tallgrass prairies. Restor Ecol 13:480–487. doi:10.1111/j.1526-100X.2005.00060.x

    Article  Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43:185–215, 410–432. doi:10.2307/1931976

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Russell JS, Moore AW (1972) Some parameters of gilgai microrelief. Soil Sci 114:82–87

    Google Scholar 

  • Schwartz MW, Brigham CA, Hoeksema JD, Lyons KG, Mills MH, PJv Mantgem (2000) Linking biodiversity to ecosystem function: implications for conservation biology. Oecologia 122:297–305. doi:10.1007/s004420050035

    Article  Google Scholar 

  • Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517. doi:10.1046/j.1461-0248.2003.00454.x

    Article  Google Scholar 

  • Smith VC, Bradford MA (2003) Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos 102:235–242. doi:10.1034/j.1600-0706.2003.12503.x

    Article  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294. doi:10.1146/annurev.ecolsys.36.102003.152636

    Article  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York

    Google Scholar 

  • Stirling G, Wilsey B (2001) Empirical relationships between species richness, evenness, and proportional diversity. Am Nat 158:286–299. doi:10.1086/321317

    Article  PubMed  CAS  Google Scholar 

  • Swan CM, Gluth MA, Horne CL Leaf litter species evenness influences nonadditive breakdown in a headwater stream. Ecology (accepted)

    Google Scholar 

  • Swift RS (2001) Sequestration of carbon by soil. Soil Sci 166:858–871. doi:10.1097/00010694-200111000-00010

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214. doi:10.2307/2937080

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861. doi:10.1073/pnas.94.5.1857

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. doi:10.1126/science.1060391

    Article  PubMed  CAS  Google Scholar 

  • Tokeshi M (1993) Species abundance patterns and community structure. Adv Ecol Res 24:111–186. doi:10.1016/S0065-2504(08)60042-2

    Article  Google Scholar 

  • Walse C, Berg B, Sverdrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environ Rev 6:25–40. doi:10.1139/er-6-1-25

    Article  CAS  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997a) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem functioning. Oikos 79:247–258. doi:10.2307/3546010

    Article  Google Scholar 

  • Wardle DA, Zackrisson O, Hornberg G, Gallet C (1997b) The influence of island area on ecosystem properties. Science 277:1296–1299. doi:10.1126/science.277.5330.1296

    Article  CAS  Google Scholar 

  • Wetzel PR, Norris WR, Lyles KM (1999) The vascular flora of Doolittle Prairie State Preserve—a prairie pothole wetland complex. J Iowa Acad Sci 106:26–33

    Google Scholar 

  • Wilsey BJ, Polley HW (2004) Realistically low species evenness does not alter grassland species-richness-productivity relationships. Ecology 85:2693–2700. doi:10.1890/04-0245

    Article  Google Scholar 

  • Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81:887–892

    Article  Google Scholar 

  • Wilsey BJ, Chalcraft DR, Bowlse CM, Willig MR (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184. doi:10.1890/04-0394

    Article  Google Scholar 

  • Zhang Q, Zak JC (1995) Effects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology 76:2196–2204. doi:10.2307/1941693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Dickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dickson, T.L., Wilsey, B.J. (2009). Biodiversity and tallgrass prairie decomposition: the relative importance of species identity, evenness, richness, and micro-topography. In: Van der Valk, A.G. (eds) Herbaceous Plant Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2798-6_23

Download citation

Publish with us

Policies and ethics