Skip to main content

Non-woody life-form contribution to vascular plant species richness in a tropical American forest

  • Chapter

Abstract

We provide total vascular plant species counts for three 1-ha plots in deciduous, semi-deciduous and evergreen forests in central Bolivia. Species richness ranged from 297 species and 22,360 individuals/ha in the dry deciduous forest to 382 species and 31,670 individuals/ha in the evergreen forest. Orchidaceae, Pteridophyta and Leguminosae were among the most species-rich major plant groups in each plot, and Peperomia (Piperaceae), Pleurothallis (Orchidaceae) and Tillandsia (Bromeliaceae), all epiphytes, were the most species-rich genera. This dominance of a few but very diverse and/or widespread taxa contrasted with the low compositional similarity between plots. In a neotropical context, these Central Bolivian forest plots are similar in total species richness to other dry deciduous and humid montane forests, but less rich than most Amazonian forests. Nevertheless, lianas, terrestrial herbs and especially epiphytes proved to be of equal or higher species richness than most other neotropical forest inventories from which data are available. We therefore highlight the importance of non-woody life-forms (especially epiphytes and terrestrial herbs) in Andean foothill forest ecosystems in terms of species richness and numbers of individuals, representing in some cases nearly 50% of the species and more than 75% of the individuals. These figures stress the need for an increased inventory effort on non-woody plant groups in order to accurately direct conservation actions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Álvarez E et al (2003) Conteo total de plantas vasculares en parcelas de 0.1 ha en Bosques de Amazonía, Chocó y los Andes de Colombia. In: Romero-Fernández L, Lucero-Mosquera H, Aguirre-Mendoza Z et al (eds) Libro de Resúmenes II Congreso de Conservación de la Biodiversidad en los Andes y la Amazonia y IV Congreso Ecuatoriano de Botánica. Editoral de la Universidad Técnica Particular de Loja, Loja, Ecuador, p 171

    Google Scholar 

  • Arévalo R, Betancur J (2004) Diversidad de epífitas vasculares en cuatro bosques del sector Suroriental de la Serranía de Chiribiquete, Guayana Colombiana. Caldasia 26:359–380

    Google Scholar 

  • Balslev H, Valencia R, Paz y Miño G et al (1998) Species count of vascular plants in 1-hectare of humid lowland forest in Amazonian Ecuador. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity in North, Central and South America and the Caribbean: research and monitoring. Man and the biosphere series, vol 21. UNESCO and Parthenon, Lancashire

    Google Scholar 

  • Benavides A, Duque A, Duivenvoorden J et al (2005) A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodivers Conserv 14:739–758. doi:10.1007/s10531-004-3920-9

    Article  Google Scholar 

  • Bonnet A (2006) Caracterização fitossociológica das bromeliáceas epifíticas e suas relações com os fatores geomorfológicos e pedológicos da planície do Rio Iguaçu, Paraná, Brasil. Dissertation, Universidade Federal do Paraná, Brazil

    Google Scholar 

  • Bonnet A, Curcio GR, Barddal ML et al (2007) Estratificação vertical de bromélias epifíticas na planície do rio Iguaçu, Paraná, Brasil. Rev Bras Biociencias 5:492–494

    Google Scholar 

  • Bordenave BG, De Granville JJ, Hoff M (1998) Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. In: Dallmeier F, Comiskey J (eds) Forest biodiversity, research, monitoring and modelling: conceptual background and Old World case studies. Man and the biosphere series, vol 20. UNESCO and Parthenon, Paris

    Google Scholar 

  • Burnham RJ (2004) Alpha and beta diversity of lianas in Yasuní National Park, Ecuador. For Ecol Manag 190:43–55. doi:10.1016/j.foreco.2003.10.005

    Article  Google Scholar 

  • Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253. doi:10.1111/j.1461-0248.2003.00566.x

    Article  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s guide and application published at: http://purl.oclc.org/estimates. Accessed 31 May 2007

  • Condit R (1995) Research in large, long-term tropical forest plots. Trends Ecol Evol 10:18–22. doi:10.1016/S0169-5347(00)88955-7

    Article  Google Scholar 

  • Condit RG, Hubbell SP, Lafrankie JV et al (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549–562. doi:10.2307/2261477

    Article  Google Scholar 

  • Condit R, Ashton PS, Baker P et al (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418. doi:10.1126/science.288.5470.1414

    Article  PubMed  CAS  Google Scholar 

  • Costa FRC (2004) Structure and composition of the ground-herb community in a terra-firme Central Amazonian forest. Acta Amazon 34:53–59

    Google Scholar 

  • Duivenvoorden JF (1994) Vascular plant species counts in the rain forests of the middle Caquetá area. Colombian Amazonia. Biodivers Conserv 3:685–715. doi:10.1007/BF00126860

    Article  Google Scholar 

  • Duivenvoorden JF, Lips JM (1995) A land ecological study of soils, vegetation and plant diversity in Colombian Amazonia. Tropenbos series 12. The Tropenbos Foundation, Wageningen

    Google Scholar 

  • Galeano G, Suárez S, Balslev H (1998) Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers Conserv 7:1563–1575. doi:10.1023/A:1008802624275

    Article  Google Scholar 

  • Gaston KJ, Chown SL (2005) Neutrality and niche. Funct Ecol 19:1–6. doi:10.1111/j.0269-8463.2005.00948.x

    Article  Google Scholar 

  • Gentry AH (1982) Patterns of neotropical plant species diversity. Evol Biol 15:1–84

    Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci USA 85:156–159. doi:10.1073/pnas.85.1.156

    Article  PubMed  CAS  Google Scholar 

  • Gentry AH (ed) (1990) Four neotropical rainforests. Yale University Press, New Haven

    Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156. doi:10.2307/2388737

    Article  Google Scholar 

  • Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60:176–184. doi:10.1007/BF00379519

    Article  Google Scholar 

  • Holmgren PK, Holmgren NH (1998) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/. Cited 20 May 2007 (continuously updated)

  • Ibisch PL (1996) Neotropische Epiphytendiversität, das Beispiel Bolivien. Martina-Galunder-Verlag, Wiehl

    Google Scholar 

  • Ibisch PL, Beck SG, Gerkmann B et al (2003) Ecoregiones y ecosistemas. In: Ibisch PL, Mérida G (eds) Biodiversidad: la riqueza de Bolivia. Estado de conocimiento y conservación. Ministerio de Desarrollo Sostenible y Planificación, Editorial FAN, Santa Cruz

    Google Scholar 

  • Ingram SW, Ferrell-Ingram K, Nadkarni NM (1996) Floristic composition of vascular epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Selbyana 17:88–103

    Google Scholar 

  • John R, Dalling JW, Harms KE et al (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869. doi:10.1073/pnas.0604666104

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen PM, Ulloa C, Maldonado C (2006) Riqueza de plantas vasculares. In: Moraes M, Øllgaard B, Kvist LP et al (eds) Botánica Económica de los Andes Centrales. Universidad Mayor de San Andrés, Plural Editores, La Paz

    Google Scholar 

  • Krömer T, Kessler M, Gradstein SR et al (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1810. doi:10.1111/j.1365-2699.2005.01318.x

    Article  Google Scholar 

  • Langenberger G, Martin K, Sauerborn J (2006) Vascular plant species inventory of a Philippine lowland rain forest and its conservation value. Biodivers Conserv 15:1271–1301. doi:10.1007/s10531-005-2576-4

    Article  Google Scholar 

  • Laurance WF, Ferreira LV, Rankin-De Merona JM et al (1998) Influence of plot shape on estimates of tree diversity and community composition in Central Amazonia. Biotropica 30:662–665. doi:10.1111/j.1744-7429.1998.tb00106.x

    Article  Google Scholar 

  • La Torre-Cuadros MA, Herrando-Pérez S, Young KR (2007) Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodivers Conserv 16:2965–2988. doi:10.1007/s10531-007-9155-9

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science, Oxford

    Google Scholar 

  • Mascaro J, Schnitzer SA, Carson WP (2004) Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica. For Ecol Manag 190:3–14. doi:10.1016/j.foreco.2003.10.002

    Article  Google Scholar 

  • Nabe-Nielsen J (2001) Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador. J Trop Ecol 17:1–19. doi:10.1017/S0266467401001018

    Article  Google Scholar 

  • Navarro G (2001) Contribución al conocimiento fitosociológico de la vegetación de epífitos vasculares del centro y sur de Bolivia. Rev Bol Ecol 10:59–79

    Google Scholar 

  • Navarro G, Vargas I, Jardim A et al (1996) Clasificación y diagnóstico para la conservación de la vegetación de la región del Parque Nacional Amboró. Santa Cruz, Bolivia. Universidad Complutense, Fundación Amigos de la Naturaleza, Museo de Historia Natural Noel Kempff Mercado, Universidad Mayor de San Andrés and New York Botanical Garden, Santa Cruz

    Google Scholar 

  • Nieder J, Engwald S, Klawun M et al (2000) Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Suromoni Crane Plot) of Southern Venezuela. Biotropica 32:385–396

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P et al (2006) vegan: Community Ecology Package version 1.8-3. http://cc.oulu.fi/~jarioksa/. Accessed 10 Oct 2006

  • Pérez-Salicrup DR, Sork VL, Putz FE (2001) Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica 33:34–47

    Google Scholar 

  • Poulsen AD, Balslev H (1991) Abundance and cover of ground herbs in an Amazonian rain forest. J Veg Sci 2:315–322. doi:10.2307/3235922

    Article  Google Scholar 

  • Poulsen AD, Nielsen IH (1995) How many ferns are there in one hectare of tropical rain forest? Am Fern J 85:29–35. doi:10.2307/1547678

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Royo AA, Carson WP (2005) The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145:66–75. doi:10.1007/s00442-005-0079-3

    Article  PubMed  Google Scholar 

  • Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050

    Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E et al (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Smith DN, Killleen TJ (1998) A comparison of the structure and composition of montane and lowland in the Serranía Pilon Lajas, Beni, Bolivia. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring. Man and the biosphere series, vol 21. UNESCO and Parthenon, Lancashire

    Google Scholar 

  • Smith LB, Downs RJ (1977) Tillansioideae (Bromeliaceae). Flora Neotrop Monogr 4:663–1492

    Google Scholar 

  • Tchouto MGP, de Boer WF, de Wilde JJFE et al (2006) Diversity patterns in the flora of the Campo-Ma’an rain forest, Cameroon: do tree species tell it all? Biodivers Conserv 15:1353–1374. doi:10.1007/s10531-005-5394-9

    Article  Google Scholar 

  • ter Steege H, Sabatier D, Castellanos H et al (2000a) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J Trop Ecol 16:801–828. doi:10.1017/S0266467400001735

    Article  Google Scholar 

  • ter Steege H, Ek R, van Andel T (2000b) A comparison of diversity patterns of tree and non-tree groups. In: ter Steege H (ed) Plant diversity in Guyana. With recommendation for a protected areas strategy. Tropenbos series 18. Tropenbos Foundation, Wageningen

    Google Scholar 

  • Tobler MW, Janovec J, Honorio E et al (2007) Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodivers Conserv 16:659–677. doi:10.1007/s10531-005-3373-9

    Article  Google Scholar 

  • Valencia R, Balslev H, Paz y Miño G (1994) High tree alpha-diversity in Amazonian Ecuador. Biodivers Conserv 3:21–28. doi:10.1007/BF00115330

    Article  Google Scholar 

  • Webb LJ, Tracey JG, Williams WT et al (1967) Studies in the numerical analysis of complex rain-forest communities: II. The problem of species-sampling. J Ecol 55:525–538. doi:10.2307/2257891

    Article  Google Scholar 

  • Whitmore TC, Peralta R, Brown K (1985) Total species count in a Costa Rican tropical rain forest. J Trop Ecol 1:375–378

    Article  Google Scholar 

  • Williams-Linera G, Palacios-Rios M, Hernández-Gomez R (2005) Fern richness, tree species surrogacy, and fragment complementarity in a Mexican tropical montane cloud forest. Biodivers Conserv 14:119–133. doi:10.1007/s10531-005-4053-5

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reynaldo Linares-Palomino .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 79 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2008 The Author(s)

About this chapter

Cite this chapter

Linares-Palomino, R. et al. (2008). Non-woody life-form contribution to vascular plant species richness in a tropical American forest. In: Van der Valk, A.G. (eds) Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2795-5_8

Download citation

Publish with us

Policies and ethics