Advertisement

Choosing a Parameterization

  • Guy ChaventEmail author
Chapter
Part of the Scientific Computation book series (SCIENTCOMP)

We address in this chapter practical aspects of parameterization for the same finite dimensional inverse problem (2.5) as in Chap. 2, where the forward map \(x \in I\!\!{R}^{n} \rightsquigarrow v = \varphi (x) \in I\!\!{R}^{q}\)

Keywords

Singular Vector Current Zonation Retrievable Parameter Euclidean Scalar Product Continuous Piecewise Linear Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Al Khoury, Ph., 2005, Algorithmes géométriques de résolution des moindres carrés non linéaires et problèmes inverses en spectroscopie des flammes, PhD Thesis, University of Paris 10, March 4Google Scholar
  2. 3.
    Al Khoury, Ph., Chavent, G., 2006, Global line search strategies for nonlinear least squares problems based on curvature and projected curvature, Inverse Probl. Sci. Eng. 14(5), 495–509zbMATHCrossRefMathSciNetGoogle Scholar
  3. 9.
    Ben-Ameur, H., Kaltenbacher, B., 2002, Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators. J. Inverse Ill Posed Probl. 10(6), 561–583zbMATHMathSciNetGoogle Scholar
  4. 10.
    Ben-Ameur, H., Chavent, G., Jaffré, J., 2002, Refinement and coarsening indicators for adaptive parametrization: Application to the estimation of the hydraulic transmissivities. Inverse Probl. 18, 775–794CrossRefGoogle Scholar
  5. 11.
    Ben-Ameur, H., Clément, F., Chavent G., Weis P., 2008, The multidimensional refinements indicators algorithm for optimal parameterization, J. Inverse Ill-Posed Probl. 16(2), 107–126zbMATHCrossRefMathSciNetGoogle Scholar
  6. 13.
    Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizbal, C.A., 2003, Numerical optimization: Theoretical and practical aspects, Springer, Universitext Series XIV, p 423zbMATHGoogle Scholar
  7. 15.
    Chardaire, C., Chavent G,. Jaffré J., Liu J., 1990, Multiscale representation for simultaneous estimation of relative permeabilities and capillary pressure, Paper SPE 20501, In Proceedings of the 65th SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, pp 303–312Google Scholar
  8. 22.
    Chavent, G., 2004, Curvature steps and geodesic moves for nonlinear least squares descent algorithms, Inverse Probl. Sci. Eng. 12(2), 173–191MathSciNetGoogle Scholar
  9. 23.
    Chavent, G., Bissel, R., 1998, Indicator for the refinement of parametrization. In Tanaka, M., and Dulikravich, G.S., eds, Inverse Problems in Engineering Mechanics, Elsevier, Amsterdam, pp 309–314CrossRefGoogle Scholar
  10. 24.
    Chavent, G., Clement, F., 2001, Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example, Geophysics 66(3), 845–860CrossRefGoogle Scholar
  11. 30.
    Chavent, G., Kunisch, K., 2002, The output least square identifiability of the diffusion coefficient from an H 1 observation in a 2-D elliptic equation, ESAIM: Contr. Optim. Calculus Variations 8, 423zbMATHCrossRefMathSciNetGoogle Scholar
  12. 33.
    Chavent, G., Jaffré, J., Jan-Jégou, S., 1999, Estimation of relative permeabilities in three-phase flow in porous media, Inverse Probl. 15, 33–39zbMATHCrossRefGoogle Scholar
  13. 35.
    Cominelli, A., Ferdinandi, F., De Montleau, P., Rossi, R., 2005, Using gradients to refine parameterization in field-case history match projects, In Proceedings of 2005 SPE Reservoir Simulation Symposium, paper SPE 93599, Houston, Texas, January 31st–February 2ndGoogle Scholar
  14. 36.
    Delprat-Jannaud, F., Laiily, P., 1992, What information on the earth model do reflection travel times provide?, J. Geophys. Res. 97(B13), 19827–19844Google Scholar
  15. 38.
    Engl, H.W., Hanke, M., Neubauer, A., 1996, Regularization of inverse problems, Kluwer, Dordrecht, p 321, (Mathematics and its applications, 375) ISBN 0-7923-4157-0Google Scholar
  16. 42.
    Grimstad, A.A., Mannseth T., Nævdal G., Urkedal H., 2003, Adaptive multiscale permeability estimation, Comput. Geosci. 7, 1–25zbMATHCrossRefGoogle Scholar
  17. 44.
    Hayek, M., Lehmann, F., Ackerer, Ph., 2007, Adaptive multiscale parameterization for one-dimensional flow in unsaturated porous media, Adv. Water Resour. (to appear)Google Scholar
  18. 48.
    Jaffard, S., Meyer, Y., Ryan, R.D., 2001, Wavelets (Tools for science and technology), Society for Industrial and Applied Mathematics, p 256, ISBN 0-89871-448-6Google Scholar
  19. 50.
    Lavaud, B., Kabir, N., Chavent, G., 1999, Pushing AVO inversion beyond linearized approximation, J. Seismic Explor. 8, 279–302Google Scholar
  20. 57.
    Liu, J., 1993, A multiresolution method for distributed parameter estimation, SIAM J. Sci. Comput. 14, 389zbMATHGoogle Scholar
  21. 58.
    Liu, J., 1994, A sensitivity analysis for least-squares ill-posed problems using the haar basis, SIAM J. Numer. Anal. 31, 1486zbMATHCrossRefGoogle Scholar
  22. 60.
    Mannseth, T., 2003, Adaptive multiscale identification of the fluid conductivity function within prous-media flow. Conference on Applied Inverse Problems: Theoritical and computational aspects, Lake Arrowhead, May 18–23Google Scholar
  23. 64.
    Næval, T., Mannseth, T., Brusdal, K., Nordtvedt, J.E., 2000, Multiscale estimation with spline wavelets, with application to two-phase porous media flow, Inverse Probl. 16, 315–332Google Scholar
  24. 68.
    Nocedal, J., Wright, S.J., 1999, Numerical optimization, Springer Series in Operation Research, New YorkzbMATHCrossRefGoogle Scholar
  25. 69.
    Økland Lien, M., 2005, Adaptive methods for permeability estimation and smart well management, Dr. Scient. Thesis in Applied Mathematics, Department of Mathematics, University of Bergen, NorwayGoogle Scholar
  26. 74.
    Sen, A., Srivastava, M., 1990, Regression analysis: Theory, methods and applications, Springer, BerlinzbMATHGoogle Scholar
  27. 78.
    Vogel, C., 2002, Computational methods for inverse problems, Frontiers in Applied Mathematics series 23, SIAMGoogle Scholar
  28. 79.
    Zhang, J., Dupuy, A., Bissel, R., 1996, Use of optimal control technique for history matching, 2nd International Conference on Inverse Problems in Engineering: Theory and Practice, June 9–14, Le Croisic, France, Engineering Foundation ed.Google Scholar
  29. 80.
    Zhang, J., Jaffré, J., Chavent, G., 2009, Estimating nonlinearities in multiphase flow in porous media, INRIA Report 6892Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Ceremade, Université Paris-DauphineParis Cedex 16France
  2. 2.Inria-RocquencourtLe Chesnay CedexFrance

Personalised recommendations