Nonlinear Inverse Problems: Examples and Difficulties
- 2.1k Downloads
Abstract
We present in this chapter the nonlinear least-squares (NLS) approach to parameter estimation and inverse problems, and analyze the difficulties associated with their theoretical and numerical resolution.
We begin in Sect. 1.1 with a simple finite dimensional example of nonlinear parameter estimation problem: the estimation of four parameters in the Knott–Zoeppritz equations. This example will reveal the structure of inverse problem, and will be used to set up the terminology.
Then we define in Sect. 1.2 an abstract framework for NLS problems, which contains the structure underlying the example of Sect. 1.1. Next we review in Sect. 1.3 the difficulties associated with the resolution of NLS problems, and hint at possible remedies and their location in the book.
Finally, Sects. 1.4–1.6 describe infinite dimensional parameter estimation problems of increasing difficulty, where the unknown is the source or diffusion coefficient function of an elliptic equation, to which the analysis developed in Chaps. 2– 5 will be applied.
Examples of time marching problems are given in Sects. 2.8 and 2.9 of Chap. 2
Keywords
Inverse Problem Reflection Coefficient Elliptic Equation Observation Operator Parameter Estimation ProblemReferences
- 1.Aki, K., Richards, P.G., 1980, Quantitative seismology: Theory and methods, W.H. Freeman, New YorkGoogle Scholar
- 8.Baumeister, J., 1987, Stable solutions of inverse problems, Vieweg, BraunschweigGoogle Scholar
- 12.Bjork, A., 1990, Least squares methods, In Ciarlet, P.G., and Lions, J.L., eds, Handbook of Numerical Analysis, North-Holland, AmsterdamGoogle Scholar
- 16.Chavent, G., 1979, Identification of distributed parameter systems: About the output least squares method, its implementation and identifiability, In Proceedings of the IFAC Symposium on Identification, Pergamon, pp 85–97Google Scholar
- 17.Chavent, G., 1986, Identifiability of parameters in the output least square formulation, In Walter, E., ed, Structural Identifiability of Parametrics Model, chapter 6, Pergamon Press, pp 67–74Google Scholar
- 19.Chavent, G., 1991, New size ×curvature conditions for strict quasi-convexity of sets, SIAM J. Contr. Optim. 29(6), 1348–1372zbMATHCrossRefMathSciNetGoogle Scholar
- 20.Chavent, G., 1991, Quasi-convex sets and size ×curvature condition, application to nonlinear inversion, J. Appl. Math. Optim. 24(1), 129–169zbMATHCrossRefMathSciNetGoogle Scholar
- 26.Chavent, G., Kunisch, K., 1993, Regularization in state space, M2AN 27, 535–564Google Scholar
- 28.Chavent, G., Kunisch, K., 1996, On weakly nonlinear inverse problems, SIAM J. Appl. Math. 56(2), 542–572zbMATHCrossRefMathSciNetGoogle Scholar
- 29.Chavent, G., Kunisch, K., 1998, State space regularization: Geometric theory, Appl. Math. Opt. 37, 243–267zbMATHCrossRefMathSciNetGoogle Scholar
- 37.Engl, H.W., Kunisch, K., Neubauer, A., 1989, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Probl. 5, 523–540zbMATHCrossRefMathSciNetGoogle Scholar
- 38.Engl, H.W., Hanke, M., Neubauer, A., 1996, Regularization of inverse problems, Kluwer, Dordrecht, p 321, (Mathematics and its applications, 375) ISBN 0-7923-4157-0Google Scholar
- 43.Groetsch, C.W., 1984, The theory of Tykhonov regularization for Fredholm equations of the first kind, Research Notes in Mathematics 105, Pitman, BostonGoogle Scholar
- 46.Isakov, V., 1998, Inverse problems for partial differential equations, Springer, Berlin, p 284 (Applied mathematical sciences, 127) ISBN 0-387-98256-6Google Scholar
- 47.Ito, K., Kunisch, K., 1994, On the injectivity and linearization of the coefficient to solution mapping for elliptic boundary value problems, J. Math. Anal. Appl. 188(3), 1040–1066zbMATHCrossRefMathSciNetGoogle Scholar
- 50.Lavaud, B., Kabir, N., Chavent, G., 1999, Pushing AVO inversion beyond linearized approximation, J. Seismic Explor. 8, 279–302Google Scholar
- 54.Levenberg, K., 1944, A method for the solution of certain nonlinear problems in least squares, Appl. Math. 11, 164–168MathSciNetGoogle Scholar
- 55.Lines, L.R., Treitel, S., Tutorial: A review of least-squares inversion and its application to geophysical problems, Geophys. Prospect. 39, 159–181Google Scholar
- 56.Lions, J.L., 1969, Quelques Méthodes de Résolution des Problèmes aux limites Non Linéaires, Dunod, PariszbMATHGoogle Scholar
- 59.Louis, A.K., 1989, Inverse und Schlecht Gestellte Probleme, Teubner, StuttgartzbMATHGoogle Scholar
- 62.Marquardt, D.W., 1963, An algorithm for least squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11, 431–441zbMATHCrossRefMathSciNetGoogle Scholar
- 63.Morozov, V.A., 1984, Methods for solving incorrectly posed problems, Springer, New YorkGoogle Scholar
- 67.Neubauer, A., 1989, Tikhonov regularization for nonlinear ill-posed problems: Optimal convergence rate and finite dimensional approximation, Inverse Probl. 5, 541–558zbMATHCrossRefMathSciNetGoogle Scholar
- 70.Richter, G.R., 1981, An inverse problem for the steady state diffusion equation, SIAM J. Math. 4, 210–221Google Scholar
- 75.Tikhonov, A.N., Arsenin, V., 1977, Solutions of ill-posed problems, Wiley, New YorkzbMATHGoogle Scholar