Skip to main content

Geographical Parthenogenesis: Opportunities for Asexuality

  • Chapter
  • First Online:
Lost Sex

Abstract

Asexual organisms often occupy larger and more northern distribution areas than their sexual relatives. These phenomena, summarized under the term “geographical parthenogenesis”, seem to confirm a short term advantage of asexual reproduction. Geographical parthenogenesis may be explained by better colonizing abilities of asexual organisms, or by a swamping of sexual populations because of introgression of asexuality. Asexual organisms may perform better in diverse and narrow ecological niches, or may benefit in colder climates from a lower pressure of parasites and predators. The distributional success of asexuals has been also referred to indirect advantages of hybridity and/or polyploidy. Sexual hybrids or polyploids, however, do not show patterns of geographical parthenogenesis. Here, I present a novel model for those asexual organisms that have originated from hybridization. Climatic changes may have triggered interspecific hybridization, which increases frequencies of new origins of asexuality, but decreases fitness of sexual progenitor species. Asexuality is further advantageous for re-colonization of devastated areas. Therefore, frequencies of asexual populations increase relative to those of related sexuals. Glaciations during the Pleistocene may have provided great opportunities for the evolution of asexual organisms, while the Tertiary might have been a period of predominant sexuality. The geologically rather recent wave of asexuality helps to explain that most extant asexual animals and plants are evolutionarily young and appear scattered on the tips of phylogenetic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8: 135–141

    Article  PubMed  CAS  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Baker HG (1967) Support for Baker’s law – as a rule. Evolution 21: 853–856

    Article  Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Bayer RJ (1990) Investigations into the evolutionary history of the Antennaria rosea (Asteraceae: Inuleae) polyploid complex. Plant Syst Evol 169: 97–110

    Article  Google Scholar 

  • Bayer RJ (1991) Allozymic and morphological variation in Antennaria (Asteraceae:Inuleae) from the low arctic of northwestern North America. Syst Bot 16: 492–506

    Article  Google Scholar 

  • Bayer RJ, Chandler GT (2007) Evolution of polyploid agamic complexes: a case study using the Catipes group of Antennaria, including the A. rosea complex (Asteraceae: Gnaphalieae). In Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 317–336

    Google Scholar 

  • Bell G (1982) The masterpiece of nature: The evolution and genetics of sexuality. California Press, Berkeley

    Google Scholar 

  • Ben-Ami F, Heller J (2005) Spatial and temporal patterns of parthenogenesis and parasitism in the freshwater snail Melanoides tuberculata. J Evol Biol 138: 138–146

    Article  Google Scholar 

  • Beukeboom LW (2007) Sex to some extent. Heredity 98:123–124

    Article  PubMed  CAS  Google Scholar 

  • Beukeboom LW, Vrijenhoek RC (1998) Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J Evol Biol 11: 755–782

    Article  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16: S228–S245

    Article  PubMed  CAS  Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41: 1255–1264

    Article  Google Scholar 

  • Birdsell JA, Wills C (2003) The evolutionary origin and maintenance of sexual recombination: a review of contemporary models. Evol Biol 33: 27–138

    CAS  Google Scholar 

  • Brochmann C, Gabrielsen TM, Nordal I, Landvik JY, Elven R (2003) Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon 52: 417–450

    Article  Google Scholar 

  • Brock MT (2004) The potential for genetic assimilation of a native dandelion species, Taraxacum ceratophorum (Asteraceae), by the exotic congener T. officinale. Am J Bot 91: 656–663

    Article  Google Scholar 

  • Burt A (2000) Perspective: sex, recombination and the efficacy of selection-was Weismann right? Evolution 54: 337–351

    PubMed  CAS  Google Scholar 

  • Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 3: 311–317

    Article  PubMed  CAS  Google Scholar 

  • Byers DL, Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30: 479–513

    Article  Google Scholar 

  • Carillo C, Britton NF, Mogie M (2002) Coexistence of sexual and asexual conspecifics: a cellular automaton model. J Theor Biol 217: 275–285

    Article  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61: 51–94

    Article  Google Scholar 

  • Carman JG (2001) The gene effect: genome collisions and apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: From mechanisms to genetic engineering. CIMMYT, Mexico DF, pp. 95–110

    Google Scholar 

  • Carman JG (2007) Do duplicate genes cause apomixis? In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds), Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 169–194

    Google Scholar 

  • Carr DE, Dudash MR (2003) Recent approaches into the genetic basis of inbreeding depression in plants. Philos Trans R Soc Lond B 358: 1071–1084

    Article  CAS  Google Scholar 

  • Chapman HM, Parh D, Oraguzie N (2000) Genetic structure and colonizing success of a clonal weedy species, Pilosella officinarum (Asteraceae). Heredity 84: 401–409

    Article  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 58: 377–406

    Article  PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6: 836–846

    Article  PubMed  CAS  Google Scholar 

  • Cosendai A-C, Hörandl E (2008) Ranunculus kuepferi (Ranunculaceae), an alpine apomict showing geographical parthenogenesis. Plant species concepts and evolution, NCCR Plant Survival International Conference, Jan 30th to 1st Feb 2008, Neuchatel, Switzerland, 36

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Ass, Sunderland

    Google Scholar 

  • Curtis MD Grossniklaus U (2007). Amphimixis and apomixis:two sides of the same coin. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel T (eds.) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 37–62

    Google Scholar 

  • de Kovel CGF, Jong G (1999) Responses of sexual and apomictic genotypes of Taraxacum officinale to variation in light. Plant Biol 1: 541–546

    Article  Google Scholar 

  • Dickinson TA, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol 266: 59–78

    Article  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004a) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. × divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 13: 349–370

    Article  PubMed  CAS  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004b) Interspecific diversification in North American Boechera stricta (= Arabis drummondii), Boechera × divaricarpa, and A. holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers – an integrative approach. Am J Bot 91: 2087–2101

    Article  Google Scholar 

  • Fehrer J, Krahulcová A, Krahulec F, Chrtek J, Rosenbaumová R, Bräutigam S (2007) Evolutionary aspects in Hieracium subgenus Pilosella. In Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 359–395

    Google Scholar 

  • Fehrer J, Šimek R, Krahulcová A, Krahulec F, Chrtek J, Bräutigam E, Bräutigam S (2005) Evolution, hybridisation, and clonal distribution of apo- and amphimictic species of Hieracium subgen. Pilosella (Asteraceae, Lactucaceae) in a central European mountain range. In: Bakker F, Chatrou L, Gravendeel B, Pelser PB (eds) Plant species-level systematics: New perspectives on pattern and process. ARG Gantner Verlag KG, Lichtenstein, pp. 175–201

    Google Scholar 

  • Fritz RS, Moulia C, Newcombe G (1999) Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annu Rev Ecol Syst 30: 565–591

    Article  Google Scholar 

  • Gade B, Parker ED (1997) The effect of life cycle stage and genotype on desiccation tolerance in the colonizing parthenogenetic cockroach Pycnoscelus surinamensis and its sexual ancestor P. indicus. J Evol Biol 10: 479–493

    Article  Google Scholar 

  • Glesener RR, Tilman D (1987) Sexuality and the components of environmental uncertainty, clues from geographic parthenogenesis in terrestrial animals. Am Nat 112: 169–673

    Google Scholar 

  • Gomez-Zurita J, Funk DJ, Vogler AP (2006) The evolution of unisexuality in Calligrapha leaf beetles: molecular and ecological insights on multiple origins via interspecific hybridization. Evolution 60: 328–347

    PubMed  CAS  Google Scholar 

  • Gray MM, Weeks SC (2001) Niche breadth in clonal and sexual fish (Poeciliopsis), a test of the frozen niche variation model. Can J Fish Aqu Sci 58: 1313–1318

    Article  Google Scholar 

  • Green RF, Noakes DLG (1995) Is a little bit of sex as good as a lot? Theor Biol 174: 87–96

    Article  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Haag CR, Ebert D (2004) A new hypothesis to explain geographic parthenogenesis. Ann Zool Fenn 41: 539–544

    Google Scholar 

  • Häfliger E (1943) Zytologisch-embryologische Untersuchungen pseudogamer Ranunkeln der Auricomus-Gruppe. Ber Schweiz Bot Ges 53: 317–379

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58: 247–276

    Google Scholar 

  • Hörandl E (1998) Species concepts in agamic complexes: applications in the Ranunculus auricomus complex and general perspectives. Folia Geobot. 33: 335–348

    Article  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171: 525–538

    PubMed  Google Scholar 

  • Hörandl E (2008) Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int J Plant Sci 169: 1219–1228

    Article  PubMed  Google Scholar 

  • Hörandl E, Cosendai A-C, Temsch E (2008) Understanding the geographic distributions of apomictic plants: a case for a pluralistic approach. Plant Ecol Divers 2: 309–320

    Article  Google Scholar 

  • Hörandl E, Greilhuber J (2002) Diploid and autotetraploid sexuals and their relationships to apomicts in the Ranunculus cassubicus group: insights from DNA content and isozyme variation. Plant Syst Evol 234: 85–100

    Article  CAS  Google Scholar 

  • Hörandl E, Greilhuber J, Dobeš C (2000) Isozyme variation and ploidy levels within the apomictic Ranunculus auricomus complex: evidence for a sexual progenitor species in southeastern Austria. Plant Biol 2: 53–62

    Article  Google Scholar 

  • Hörandl E, Greilhuber J, Klimova K, Paun O, Temsch E, Emadzade K, Hodálová I (in press) Reticulate evolution and taxonomic concepts in the Ranunculus auricomus complex (Ranunculaceae): insights from morphological, karyological and molecular data. Taxon

    Google Scholar 

  • Hörandl E, Jakubowsky G, Dobeš C (2001) Isozyme and morphological diversity within apomictic and sexual taxa of the Ranunculus auricomus complex. Plant Syst Evol 226: 165–185

    Article  Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel T (eds) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 169–194

    Google Scholar 

  • Hörandl E, Paun O, Johansson J, Lehnebach C, Armstrong T, Lockhart P (2005) Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Mol Phyl Evol 36: 305–327

    Article  CAS  Google Scholar 

  • Hörandl E, Temsch E (2009) Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex. Ann Bot 104: 81–89

    Google Scholar 

  • Huber W (1988) Natürliche Bastardierungen zwischen weißblühenden Ranunculus-Arten in den Alpen (Natural hybridizations between white-flowered species of Ranunculus in the Alps). Veröff Geobot Inst ETH, Zürich 100:1–160 [German with English abstract]

    Google Scholar 

  • Izmaiłow R (1965) Macrosporogenesis in the apomictic species Ranunculus cassubicus. Acta Biol Cracov 8: 183–195

    Google Scholar 

  • Izmaiłow R (1967) Observations in embryo and endosperm development in various chromosomic types of the apomictic species Ranunculus cassubicus L. Acta Biol Cracov 10: 99–111

    Google Scholar 

  • Jalas J, Suominen J (1989) Atlas Florae Europaeae. 8. Nymphaeaceae to Ranunculaceae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki

    Google Scholar 

  • Johnson SG, Bragg E (1999) Age and polyphyletic origins of hybrid and spontaneous parthenogenetic Campeloma (Gastropoda: Viviparidae) from the southeastern United States. Evolution 53: 1769–1781

    Article  CAS  Google Scholar 

  • Jokela J, Lively CM, Dybdahl MF, Fox JA (2003) Genetic variation in sexual and clonal lineages of a freshwater snail. Biol J Linn Soc 79: 165–181

    Article  Google Scholar 

  • Jokela J, Lively CM, Fox JA, Dybdahl MF (1997) Flat reaction norms and ‘frozen’ phenotypic variation in clonal snails (Potamopyrgus antipodarum). Evolution 51: 1120–1129.

    Article  Google Scholar 

  • Kearney M (2003) Why is sex so unpopular in the Australian desert? Trends Ecol Evol 18: 605–607

    Article  Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20: 495–502

    Article  PubMed  Google Scholar 

  • Kirk H, Choi YH, Kim HK, Verpoorte R, van der Meijden E (2005) Comparing metabolomes: the chemical consequences of hybridization in plants. New Phytol 167: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Dobeš C, Mitchell-Olds T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20: 338–350

    Article  PubMed  CAS  Google Scholar 

  • Koltunow A, Grossniklaus U (2003) Apomixis, a developmental perspective. Annu Rev Plant Biol 54: 547–574

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24: 35–43

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

    Google Scholar 

  • Lockhart P, McLechnanan PA, Havell D, Glenny D, Huson D, Jensen U (2001) Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decomposition. Ann Missouri Bot Gard 88: 458–477

    Article  Google Scholar 

  • Loxdale H, Lushai G (2003) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linn Soc 79: 3–16

    Article  Google Scholar 

  • Lundmark M, Saura A (2006) Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas 143: 23–32

    Article  PubMed  Google Scholar 

  • Lushai G, Loxdale HD, Allen JA (2003) The dynamic clonal genome and its adaptive potential. Biol J Linn Soc 79: 193–208

    Article  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q Rev Biol 59: 257–290

    Article  Google Scholar 

  • Mable K (2007). Sex in the postgenomic era. Trends Ecol Evol 2: 559–561

    Article  Google Scholar 

  • Mallet J (2007). Hybrid speciation. Nature 446: 279–283

    Article  PubMed  CAS  Google Scholar 

  • Martens K, Rossetti G, Horne DJ (2003) How ancient are ancient asexuals? Proc R Soc London B 270: 723–729

    Article  Google Scholar 

  • Matzk F, Prodanovic S, Bäumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Prodanovic S, Cziha A, Tiedemann J, Arzenton F, Blattner F, Kumlehn J, Altschmied L, Schubert I, Johnston A, Grossniklaus U, Bäumlein H (2007) Genetic control of apomixis – preliminary lessons from Poa, Hypericum and wheat egg cells. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel T (eds) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 169–194

    Google Scholar 

  • Mavárez J, Linares M (2008) Homoploid hybrid speciation. Mol Ecol 17: 4181–4185

    Article  PubMed  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Meirmans PG, Vlot EC, Den Nijs JCM, Menken SBJ (2003) Spatial ecological and genetic structure of a mixed population of sexual diploid and apomictic triploid dandelions. J Evol Biol 16: 343–352

    Article  PubMed  CAS  Google Scholar 

  • Meirmans S, Skorping A, Lonying MK, Kirkendall LR (2006) On the track of the Red Queen: bark beetles, their nematodes, local climate and geographic parthenogenesis. J Evol Biol 19: 1939–1947.

    Article  PubMed  CAS  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

    Google Scholar 

  • Mogie M, Britton NF, Stewart-Cox JA (2007) Asexuality, polyploidy and the male function. In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis, evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 195–214

    Google Scholar 

  • Moritz C, Heideman A (1993) The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): Reciprocal origins and diverse mitochondrial DNA in western populations. Syst Biol 42: 293–306

    Google Scholar 

  • Nogler GA (1971) Genetik der Aposporie bei Ranunculus auricomus s.l. W. Koch. I. Embryologie. Ber Schweiz Bot Ges 81: 139–179

    Google Scholar 

  • Nogler GA (1984) Genetics of apospory in apomictic Ranunculus auricomus: 5. Conclusion. Bot Helv 94: 411–423

    Google Scholar 

  • Nogler GA (1995) Genetics of apomixis in Ranunculus auricomus. VI. Epilogue. Bot Helv 105: 111–115

    Google Scholar 

  • Noirot M, Couvet D, Hamon S (1997) Main role of self-pollination rate on reproductive allocations in pseudogamous apomicts. Theor Appl Genet 95: 479–483

    Article  Google Scholar 

  • Noyes RD (2007) The evolutionary genetics of apomixis in Erigeron sect. Phalacroloma (Asteraceae). In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 337–358

    Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155: 379–390

    PubMed  CAS  Google Scholar 

  • Orians CM (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant-herbivore interactions. Am J Bot 87: 1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Otto SP, Nuismer SL (2004) Species interactions and the evolution of sex. Science 304:1018–1020

    Article  PubMed  CAS  Google Scholar 

  • Palop-Esteban M, Segarra-Moragues JG, Gonzalez-Candelas F (2007) Historical and biological determinants of genetic diversity in the highly endemic triploid sea lavender Limonium dufourii (Plumbaginaceae). Mol Ecol 16: 3814–3827

    Article  PubMed  CAS  Google Scholar 

  • Paun O, Greilhuber J, Temsch E, Hörandl E (2006a) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Mol Ecol 15: 897–910

    Article  PubMed  CAS  Google Scholar 

  • Paun O, Lehnebach C, Johansson JT, Lockhart P, Hörandl E (2005) Phylogenetic relationships and biogeography of Ranunculus and allied genera in the Mediterranean and the European alpine system (Ranunculaceae). Taxon 54: 911–930

    Article  Google Scholar 

  • Paun O, Stuessy TF, Hörandl E (2006b) The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytol 171: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391: 889–892

    Article  CAS  Google Scholar 

  • Poelt J. (1970) Das Konzept der Artenpaare bei den Flechten. Deutsch Bot Ges 4: 187–198.

    Google Scholar 

  • Pongratz N, Storhas M, Carranza S, Michiels NK (2003) Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evol Biol 3: 23

    Article  PubMed  Google Scholar 

  • Pound GE, Cox SJ, Doncaster CP (2004) The accumulation of deleterious mutations within the frozen niche variation hypothesis. J Evol Biol 17: 651–662

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sexual Plant Reprod 13: 243–249

    Article  Google Scholar 

  • Richards AJ (1997) Plant breeding. Chapman and Hall, London

    Google Scholar 

  • Rieseberg L, Willis JH (2007) Plant speciation. Science 317: 910–914

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy J, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301: 1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Robinson MT, Weeks AR, Hoffmann AA (2002) Geographic patterns of clonal diversity in the earth mite species Penthaleus major with particular emphasis on species margins. Evolution 56: 1160–1167

    PubMed  Google Scholar 

  • Rousi A (1956) Cytotaxonomy and reproduction in the apomictic Ranunculus auricomus group. Ann Bot Soc Zool Bot FennVanamo 29:1–64

    Google Scholar 

  • Rutishauser A (1954) Die Entwicklungserregung des Endosperms bei pseudogamen Ranunculusarten. Mitt Naturforsch Ges Schaffhausen 25: 1–45

    Google Scholar 

  • Schön I, Gandolfi A, Di Masso E, Rossi V, Griffiths HI, Martens K, Butlin RK (2000) Persistence of asexuality through mixed reproduction in Eucypris virens (Crustacea, Ostracoda). Heredity 84: 161–169

    Article  PubMed  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19: 198–207

    Article  PubMed  Google Scholar 

  • Semlitsch RD, Hotz H, Guex GD (1997) Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the Frozen Niche Variation model. Evolution 51: 1249–1261

    Article  Google Scholar 

  • Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79: 151–163

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Schemske D, Hamcock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56: 13–30

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL, Dawe JC (1987) Polyploidy and distribution in the European flora: a reappraisal. Bot Jahrb Syst 108: 343–354

    Google Scholar 

  • Strasburg JL, Kearney M (2005) Phylogeography of sexual Heteronotia binoei (Gekkonidae) in the Australian arid zone: climatic cycling and repetitive hybridization. Mol Ecol 14: 2755–2772

    Article  PubMed  CAS  Google Scholar 

  • Tas ICQ, Van Dijk P (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83: 707–714

    Article  PubMed  Google Scholar 

  • Trewick SA, Morgan-Richards M, Chapman HM (2004) Chloroplast DNA diversity of Hieracium pilosella (Asteraceae) introduced to New Zealand: reticulation, hybridization, and invasion. Am J Bot 91: 73–85

    Article  CAS  Google Scholar 

  • Urbani MH (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236: 99–105

    Article  Google Scholar 

  • Van Dijk P (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc Lond B 358: 1113–1121

    Article  CAS  Google Scholar 

  • Van Dijk P, Tas ICQ, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83: 715–721

    Article  PubMed  Google Scholar 

  • Van Dijk P, van Baarlen P, de Jong JH (2003) The occurrence of phenotypically complementary apomixis-recombinants. Sex Plant Repr 16: 71–76

    Article  Google Scholar 

  • Van Dijk PJ (2007) Potential and realized costs of sex in dandelions, Taraxacum officinale s.l. In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: Evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 215–233

    Google Scholar 

  • Van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms:a reappraisal. In: Bakker F, Chatrou L, Gravendeel B, Pelser PB (eds) Plant species-level systematics: New perspectives on pattern and process. ARG Gantner Verlag KG, Lichtenstein, pp. 101–116

    Google Scholar 

  • Vandel A (1928) La parthénogenese geographique. Contribution a l’étude biologique et cytologique de la parthénogenese naturelle. Bull Biol France Belg 62: 164–182

    Google Scholar 

  • Vavrek JMC, McGraw JB, Yang HS (1998) Within-population variation in demography of Taraxacum officinale (Asteraceae): differential genotype response and effect on interspecific competition. Am J Bot 85: 947–954

    Article  Google Scholar 

  • Verduijn MH, Van Dijk P, van Damme JMM (2004) Distribution, phenology and demography of sympatric sexual and asexual dandelions (Taraxacum officinale s.l.): geographical parthenogenesis on small scale. Biol J Linn Soc 82: 205–218

    Article  Google Scholar 

  • Vorburger C, Sunnucks P, Ward SA (2003) Explaining the coexistence of asexuals with their sexual progenitors:no evidence for general-purpose genotypes in obligate parthenogens of the peach-potato aphid, Myzus persicae. Ecol Lett 6: 1091–1098

    Article  Google Scholar 

  • Vrijenhoek RC (1984) Ecological differentiation among clones: the frozen niche variation model. In: Woermann K, Loeschcke V (ed) Population biology and evolution, Springer, Berlin, pp. 217–231

    Google Scholar 

  • Vrijenhoek RC (1994) Unisexual fish: model systems for studying ecology and evolution. Annu Rev Ecol Syst 25: 71–96

    Article  Google Scholar 

  • Vuille C, Küpfer P (1985) Aposporie chez le Ranunculus parnassifolius. L. I. Etude cytoembryologique. Bull Soc Neuchat Sci Nat 108: 123–134

    Google Scholar 

  • Weber HE (1995) Rubus. In: Weber HE (ed) Gustav Hegi, Illustrierte Flora von Mitteleuropa, vol. IV 2A, ed. 3, Parey, Munich, pp. 284–595

    Google Scholar 

Download references

Acknowledgements

I would like to thank Isa Schön, Peter Van Dijk and one anonymous referee for valuable comments on the manuscript. This work was funded by the Austrian Research Foundation (FWF), P 19006-B03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Hörandl .

Editor information

Editors and Affiliations

Glossary

Agamospecies:

apomictic lineages with distinct morphological, ecological and geographical features, which have been classified formally as species.

Apomeiotic:

the development of the embryo sac without meiosis in flowering plants

GlossarySeeAlso(see also Chapter 3)
Aposporous:

a form of apomitic reproduction in flowering plants, whereby the embryo sac develops out of a somatic cell

GlossarySeeAlso(see also Chapter 3)
Homoploid hybrids:

hybrids with the same ploidy level as the parents; usually applied to diploid hybrids, which have originated from diploid parental species.

Pseudogamy:

sperm-dependent or pollen-dependent asexual reproduction.

GlossarySeeAlso(see also Chapter 3)
Uniparental reproduction:

reproduction via only one parental individual (including unisexual reproduction, apomixis, automixis, and autogamy of hermaphroditic organisms; vegetative propagation is not included here; ).

GlossarySeeAlso(see also Chapter 3)

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hörandl, E. (2009). Geographical Parthenogenesis: Opportunities for Asexuality. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_8

Download citation

Publish with us

Policies and ethics