Skip to main content

Geographical Parthenogenesis: General Purpose Genotypes and Frozen Niche Variation

  • Chapter
  • First Online:
Lost Sex

Abstract

Clonally reproducing all-female lineages of plants and animals are often more frequent at higher latitudes and altitudes, on islands, and in disturbed habitats. Attempts to explain this pattern, known as geographical parthenogenesis, generally treat the parthenogens as fugitive species that occupy marginal environments to escape competition with their sexual relatives. These ideas often fail to consider the early competitive interactions with immediate sexual ancestors, which shape alternative paths that newly formed clonal lineages might follow. Here we review the history and evidence for two hypotheses concerning the evolution of niche breadth in asexual species – the “general-purpose genotype” (GPG) and “frozen niche-variation” (FNV) models. The two models are often portrayed as mutually exclusive, respectively viewing clonal lineages as generalists versus specialists. Nonetheless, they are complex syllogisms that share common assumptions regarding the likely origins of clonal diversity and the strength of interclonal selection in shaping the ecological breadth of asexual populations. Both models find support in ecological and phylogeographic studies of a wide range of organisms, and sometimes generalist and specialist traits (e.g., physiological tolerance, microspatial preference, seasonal abundance, food habits, etc.) are found together in an asexual organism. Ultimately, persistent natural clones should be viewed as microspecies in ecological models that consider spatial and temporal heterogeneity rather than multi-locus genotypes in simplistic population models.

“It is not entirely clear, however, how forms whose genetic system must be very inflexible manage to become adapted to new environments when they do get transported to them: the apparent ecological versatility in space seems to be at variance with their lack of ecological versatility in time” (Original italics; MJD White, 1973, p. 748).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annest JL, Templeton AR (1978) Genetic recombination and clonal selection in Drosophila mercatorum. Genetics 89: 193–210

    PubMed  CAS  Google Scholar 

  • Antonovics J (1968) Evolution in closely adjacent plant populations, V. Evolution of self-fertility. Heredity 23: 219–238

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) Genetics of colonizing species. Academic Press, New York, pp. 147–172

    Google Scholar 

  • Barata C, Hontoria F, Amat F, Browne R (1996) Competition between sexual and parthenogenetic Artemia: temperature and strain effects. J Exp Mar Biol Ecol 196: 313–328

    Article  Google Scholar 

  • Bell G (1982) The Masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Beukeboom L, Vrijenhoek RC (1998) Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J Evol Biol 11: 755–782

    Article  Google Scholar 

  • Bierzychudek P (1989) Environmental sensitivity of sexual and apomictic Antennaria: do apomicts have general-purpose genotypes? Evolution 43: 1456–1466

    Article  Google Scholar 

  • Bolger DT, Case TJ (1994) Divergent ecology of sympatric clones of the asexual gecko, Lepidodactylus lugubris. Oecologia 100: 397–405

    Article  Google Scholar 

  • Browne RA, Hoopes CW (1990) Genotypic diversity and selection in asexual brine shrimp (Artemia). Evolution 44: 1035–1051

    Article  Google Scholar 

  • Browne RA, Wanigasekera G (2000) Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. J Exp Mar Biol Ecol 244: 29–44

    Article  Google Scholar 

  • Bulger AJ, Schultz RJ (1979) Heterosis and interclonal variation in thermal tolerance in unisexual fish. Evolution 33: 848–859

    Article  Google Scholar 

  • Bulger AJ, Schultz RJ (1982) Origins of thermal adaptation in northern vs southern populations of a unisexual hybrid fish. Evolution 36: 1041–1050

    Article  Google Scholar 

  • Carson H (1968) The population flush and its genetic consequences. In: Lewontin R (ed) Population biology and evolution. Syracuse University Press, Syracuse, New York, pp. 123–137

    Google Scholar 

  • Carvalho G (1987) The clonal ecology of Daphnia magna (Crustacea: Cladocera): II. Thermal differentiation among seasonal clones. J Anim Ecol 56: 469–478

    Article  Google Scholar 

  • Case T (1990) Patterns of coexistence in sexual and asexual species of Cnemidophorus lizards. Oecologia 83: 220–227

    Article  Google Scholar 

  • Case TJ, Taper ML (1986) On the coexistence and coevolution of asexual and sexual competitors. Evolution 40: 366–387

    Article  Google Scholar 

  • Chesson PL (1985) Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theor Popul Biol 28: 263–287

    Article  Google Scholar 

  • Christensen B (1979) Differential distribution of genetic variants in triploid parthenogenetic Trichoniscus pusillus (Isopoda: Crustacea) in a heterogeneous environment. Hereditas 91: 179–182

    Article  Google Scholar 

  • Christensen B (1980) Constant differential distribution of genetic variants in parthenogenetic forms of Lumbricillus lineatus (Enchytraeidae, Oligochaeta) in a heterogeneous environment. Hereditas 92: 193–198

    Google Scholar 

  • Christensen B, Noer H (1986) Spatial and temporal components of genetic variation in triploid parthenogenetic Trichoniscus pusillus (Isopoda, Crustacea). Hereditas 105: 277–285

    Article  Google Scholar 

  • Christensen B, Noer H, Theisen BF (1988) Differential response to humidity and soil type among clones of triploid parthenogenetic Trichoniscus pusillus (Isopoda, Crustacea). Hereditas 108: 213–217

    Article  Google Scholar 

  • Clanton W (1934) An unusual situation in the salamander Ambystoma jeffersonianum (Green). Occ Pap Mus Zool Univ Michigan 290: 1–15

    Google Scholar 

  • Cuellar O (1977) Animal parthenogenesis. Science 197: 837–843

    Article  PubMed  CAS  Google Scholar 

  • Cullum A (1997) Comparisons of physiological performance in sexual and asexual whiptail lizards (genus Cnemidophorus): implications for the role of heterozygosity. Am Natur 150: 24–47

    Article  PubMed  CAS  Google Scholar 

  • da Cuhna A, Burla H, Dobzhansky T (1950) Adaptive chromosome polymorphism in Drosophila willistoni. Evolution 4: 212–235

    Article  Google Scholar 

  • Darling JA, Reitzel AM, Finnerty JR (2004) Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Mol Ecol 13: 2969–2981

    Article  PubMed  CAS  Google Scholar 

  • de Kovel CGF, de Jong G (2000) Selection on apomictic lineages of Taraxacum at establishment in a mixed sexual apomictic population. J Evol Biol 13: 561–568

    Article  Google Scholar 

  • Delmotte F, Leterme N, Gauthier J-P, Rispe C, Simon. J-C (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol 11: 711–723

    Article  PubMed  CAS  Google Scholar 

  • Doeringsfeld MR, Schlosser IJ, Elder JF, Evenson DP (2004) Phenotypic consequences of genetic variation in a gynogenetic complex of Phoxinus eos-neogaeus clonal fish (Pisces: Cyprinidae) inhabiting a heterogeneous environment. Evolution 58: 1261–1273

    PubMed  Google Scholar 

  • Dolatti L, Ghareyazie B, Moharramipour S, Noori-Daloii MR (2005) Evidence for regional diversity and host adaptation in Iranian populations of the Russian wheat aphid. Entomol Exp Appl 114: 171–180

    Article  CAS  Google Scholar 

  • Doncaster CP, Pound GE, Cox SJ (2000) The ecological cost of sex. Nature 404: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Drosopoulis S (1978) Laboratory synthesis of a pseudogamous triploid “species” of the genus Mullerianella (Homoptera, Delphacidae). Evolution 32: 916–920

    Article  Google Scholar 

  • Dybdahl MF, Kane SL (2005) Adaptation vs. phenotypic plasticity in the success of a clonal invader. Ecology 86: 1592–1601

    Article  Google Scholar 

  • Echelle AA, Echelle AF (1997) Patterns of abundance and distribution among members of a unisexual-bisexual complex of fishes (Atherinidae: Menidia). Copeia 1997: 249–259

    Article  Google Scholar 

  • Elder JF, Jr, Schlosser IJ (1995) Extreme clonal uniformity of Phoxinus eos/neogaeus gynogens (Pisces: Cyprinidae) among variable habitats in northern Minnesota beaver ponds. Proc Natl Acad Sci USA 92: 5001–5005

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot 74: 123–131

    Article  Google Scholar 

  • Enghoff H (1976) Parthenogenesis and bisexuality in the millipede, Nemasoma varicorne C. L. Koch, 1847 (Diplopoda: Blaniulidae). Morphological, ecological and biogeographical aspects. Vidensk Meddr Dansk Naturhistorisk Forening 139: 21–59

    Google Scholar 

  • Fenton B, Woodford JAT, Malloch G (1998) Analysis of clonal diversity of the peach-potato aphid, Myzus persicae (Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Mol Ecol 7: 1475–1487

    Article  PubMed  CAS  Google Scholar 

  • Fox JA, Dybdahl MF, Jokela J, Lively CM (1995) Genetic structure of coexisting sexual and clonal subpopulations in a freshwater snail (Potamopyrgus antipodarum). Evolution 50: 1541–1548

    Article  Google Scholar 

  • Futuyma DJ, Cort RP, van Noordwijk I (1984) Adaptation to host plants in the fall cankerworm (Alsophila pometaria) and its bearing on the evolution of host affiliation in phytophagous insects. Am Natur 123: 287–296

    Article  Google Scholar 

  • Futuyma DJ, Leipertz SL, Mitter C (1981) Selective factors affecting clonal variation in the fall cankerworm Alsophila pometaria (Lepidoptera: Geometridae). Heredity 47: 151–172

    Article  Google Scholar 

  • Gade B, Parker ED Jr (1997) The effect of life cycle stage and genotype on desiccation tolerance in the colonizing parthenogenetic cockroach Pycnoscelus surinamensis and its sexual ancestor P. indicus. J Evol Biol 10: 479–493

    Article  Google Scholar 

  • Gaggiotti OE (1994) An ecological model for the maintenance of sex and geographic parthenogenesis. J Theor Biol 167: 201–221

    Article  Google Scholar 

  • García-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51: 21–28

    Article  Google Scholar 

  • Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley

    Google Scholar 

  • Glesener RR, Tilman D (1978) Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am Nat 112: 659–673

    Article  Google Scholar 

  • Goldschmidt RB (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gomes-Ferreira A, Ribeiro F, Moreira da Costa L, Cowx IG, Collares-Pereira MJ (2005) Variability in diet and foraging behaviour between sexes and ploidy forms of the hybridogenetic Squalius alburnoides complex (Cyprinidae) in the Guadiana River basin, Portugal. J Fish Biol 66: 454–467

    Article  Google Scholar 

  • Gray MM, Weeks SC (2001) A comparison of dietary use patterns of clonal and sexual fish (Poeciliidae: Poeciliopsis). Can J Fish Aquat Sci 58: 1313–1318

    Article  Google Scholar 

  • Groot TVM, Janssen A, Pallini A, Breeuwer JAJ (2005) Adaptation in the asexual false spider mite Brevipalpus phoenicis: Evidence for frozen niche variation. Exp Appl Acarol 36: 165–176

    Article  PubMed  Google Scholar 

  • Haack L, Simon J-C, Gauthier J-P, Plantegenest M, Dedryver C-A (2000) Evidence for predominant clones in a cyclically parthenogenetic organism provided by combined demographic and genetic analyses. Mol Ecol 9: 2055–2066

    Article  PubMed  CAS  Google Scholar 

  • Haag C, Ebert D (2004) A new hypothesis to explain geographic parthenogenesis. Ann Zool Fennici 41: 539–544

    Google Scholar 

  • Haldane JBS, Jayakar SD (1963) Polymorphism due to selection of varying direction. J Genet 58: 237–242

    Article  Google Scholar 

  • Hamilton WD, Henderson P, Moran N (1981) Fluctuation of environmental and coevolved antagonist polymorphism as factors in the maintenance of sex. In: Alexander RD, Tinkle D (eds) Natural selection and social behavior. Chiron Press, New York, pp. 363–381

    Google Scholar 

  • Harshman LG, Futuyma DJ (1985) The origin and distribution of clonal diversity in Alsophila pometaria (Lepidoptera: Geometridae). Evolution 39: 315–324

    Article  Google Scholar 

  • Hebert PDN (1974) Ecological differences among genotypes in a natural population of Daphnia magna. Heredity 33: 327–337

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Beaton MJ, Schwartz SS, Stanton DJ (1989) Polyphyletic origins of asexuality in Daphnia pulex. I. Breeding-system variation and levels of clonal diversity. Evolution 43: 1004–1015

    Article  Google Scholar 

  • Hebert PDN, Crease TJ (1980) Clonal coexistence in Daphnia pulex (Leydig): another planktonic paradox. Science 207: 1363–1365

    Google Scholar 

  • Hebert PDN, Ward RD, Weider LJ (1988) Clonal diversity patterns and breeding-system variation in Daphnia pulex, an asexual-sexual complex. Evolution 42: 147–149

    Article  Google Scholar 

  • Hedrick P (1995) Genetic polymorphism in a temporally varying environment: effects of delayed germination or diapause. Heredity 75: 164–170

    Article  Google Scholar 

  • Hedrick PW, Ginevan ME, Ewing EP (1976) Genetic polymorphism in heterogeneous environments. Annu Rev Ecol Syst 7: 1–32

    Article  Google Scholar 

  • Hembre LK, Megard RO (2006) Direct and indirect effects of predation on the genetic structure of a Daphnia population. J Plankton Res 28: 1129–1141

    Article  CAS  Google Scholar 

  • Horne DJ, Martens K (1999) Geographical parthenogenesis in European non-marine ostracods: post-glacial invasion or Holocene stability? Hydrobiologia 391: 1–7

    Article  Google Scholar 

  • Hotz H, Beerli P, Guex G-D, Semlitsch RD, Uzzell T (1994) Clonal diversity and hybrid frequency are not correlated in water frogs: is the Frozen Niche Variation model wrong? II International Symposium on Ecology and Genetics of European Water Frogs 39: 513–514

    Google Scholar 

  • Hotz H, Semlitsch RD, Gutmann E, Guex G-D, Beerli P (1999) Spontaneous heterosis in larval life-history traits of hemiclonal frog hybrids. Proc Natl Acad Sci USA 96: 2171–2176

    Article  PubMed  CAS  Google Scholar 

  • Hoy Jensen L, Enghoff H, Frydenberg J, Parker ED Jr (2002) Genetic diversity and the phylogeography of parthenogenesis: comparing bisexual and thelytokous populations of Nemasoma varicorne (Diplopoda: Nemasomatidae) in Denmark. Hereditas 136: 184–194

    Article  Google Scholar 

  • Jacobsen R, Forbes V (1997) Clonal variation in life history traits and feeding rates in the gastropod, Potamopyrgus antipodarum: performance across a salinity gradient. Funct Ecol 11: 260–267

    Article  Google Scholar 

  • Jaenike J, Parker ED Jr, Selander RK (1980) Clonal niche structure in the parthenogenetic earthworm Octolasion tyrtaeum. Am Natur 116: 196–205

    Article  Google Scholar 

  • Jokela J, Lively CM, Dybdahl MF, Fox JA (2003) Genetic variation and maintenance of sex. Biol J Linn Soc 79: 165–181

    Article  Google Scholar 

  • Jokela J, Lively CM, Fox JA, Dybdahl MF (1997) Flat reaction norms and ‘frozen’ phenotypic variation in clonal snails (Potamopyrgus antipodarum). Evolution 51: 1120–1129

    Article  Google Scholar 

  • Kawecki TJ (1988) Unisexual/bisexual breeding complexes in Poeciliidae: why do males copulate with unisexual females? Evolution 42: 1018–1023

    Article  Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20: 495

    Article  PubMed  Google Scholar 

  • Kearney M (2006) Response to Lundmark: Polyploidization, hybridization and geographical parthenogenesis. Trends Ecol Evol 21: 10

    Article  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85: 3119–3131

    Article  Google Scholar 

  • Kearney M, Shine R (2004) Developmental success, stability, and plasticity in closely related parthenogenetic and sexual lizards (Heteronotia, Gekkonidae). Evolution 58: 1560–1572

    PubMed  Google Scholar 

  • Kearney M, Shine R (2005) Lower fecundity in parthenogenetic geckos than sexual relatives in the Australian arid zone. J Evol Biol 18: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Kearney M, Wahl R, Autumn K (2005) Increased capacity for sustained locomotion at low temperature in parthenogenetic geckos of hybrid origin. Physiol Biochem Zool 78: 316–324

    Article  PubMed  Google Scholar 

  • Kenny N (1996) A test of the general purpose genotype hypothesis in sexual and asexual Erigeron species. Am Midl Nat 136: 1–13

    Article  Google Scholar 

  • Kirkendall LR, Stenseth NC (1990) Ecological and evolutionary stability of sperm-dependent parthenogenesis: effects of partial niche overlap between sexual and asexual females. Evolution 44: 698–714

    Article  Google Scholar 

  • Koella JC (1988) The tangled bank: the maintenance of sexual reproduction through competitive interactions. J Evol Biol 2: 95–116

    Article  Google Scholar 

  • Ladle R, Johnstone R, Judson O (1993) Coevolutionary dynamics of sex in a metapopulation: escaping the Red Queen. Proc R Soc Lond B 253: 155–160

    Article  Google Scholar 

  • Leberg P, Vrijenhoek RC (1994) Variation among desert topminnows in their susceptibility to attack by exotic parasites. Cons Biol 8: 419–424

    Article  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87: 331–333

    Article  Google Scholar 

  • Lima NRW (2005) Variations on maternal-embryonic relationship in two natural and six laboratory made hybrids of Poeciliopsis monacha-lucida (Pisces, Cyprinodontiformes). Braz Arch Biol Technol 48: 73–79

    Google Scholar 

  • Lima NRW, Koback CJ, Vrijenhoek RC (1996) Evolution of sexual mimicry in sperm-dependent clonal forms of Poeciliopsis (Pisces: Poeciliidae). J Evol Biol 9: 185–203

    Article  Google Scholar 

  • Lima NRW, Vrijenhoek RC (1996) Avoidance of filial cannibalism by sexual and clonal forms of Poeciliopsis (Pisces: Poeciliidae). Anim Behav 51: 293–301

    Article  Google Scholar 

  • Lindroth CH (1954) Experimentelle Beobachtungen an parthenogenetischem und bisexuellem Otiorrhynchus dubius Stroem (Col., Curculionidae). Entomol Tidskr 75: 111–116

    Google Scholar 

  • Lively CM, Craddock C, Vrijenhoek RC (1990) The Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344: 864–866

    Article  Google Scholar 

  • Llewellyn K, Loxdale H, Harrington R, Brookes C, Clark S, P S (2003) Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol Ecol 12: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Lokki J, Saura A, Lankinen P, Suomalainen E (1976) Genetic polymorphism and evolution in parthenogenetic animals. VI. Diploid and triploid Polydrosus mollis (Coleoptera: Curculionidae). Hereditas 82: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Lokki J, Suomalainen E, Saura A, Lankinen P (1975) Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Solenobia triquetrella(Lepidoptera: Psychidae). Genetics 79: 513–525

    PubMed  CAS  Google Scholar 

  • Lomnicki A (2001) Carrying capacity, competition and maintenance of sexuality. Evol Ecol Res 3: 603–610

    Google Scholar 

  • Lowe CH, Wright JW (1966) Evolution of parthenogenetic species of Cnemidophorus (whiptail lizards) in western North America. J Arizona Acad Sci 4: 81–87

    Google Scholar 

  • Løyning MK (2000) Reproductive performance of clonal and sexual bark beetles (Coleoptera: Scolytidae) in the field. J Evol Biol 13: 743–748

    Article  Google Scholar 

  • Lundmark M (2006) Polyploidization, hybridization and geographical parthenogenesis. Trends Ecol Evol 21: 9

    Article  PubMed  Google Scholar 

  • Lundmark M, Saura A (2006) Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas 143: 23–32

    Article  PubMed  Google Scholar 

  • Lynch M (1983) Ecological genetics of Daphnia pulex. Evolution 37: 358–374

    Article  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographical parthenogenesis. Quart Rev Biol 59: 257–290

    Article  Google Scholar 

  • Lynch M (1985) Spontaneous mutations for life history characters in an obligate parthenogen. Evolution 39: 804–818

    Article  Google Scholar 

  • Lynch M, Bürger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84: 339–344

    PubMed  CAS  Google Scholar 

  • Lynch M, Gabriel W (1987) Environmental tolerance. Am Nat 129: 283–303

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Mark Welch D, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual recombination or genetic exchange. Science 288: 1211–1215.

    Article  PubMed  CAS  Google Scholar 

  • Martins MJ, Colares-Pereira MJ, Cowz IG, Coelho MM (1998) Diploidsv.triploids of Rutilus alburnoides: spatial segregation and morphological differences. J Fish Biol 52: 817–828

    Google Scholar 

  • Maslin TP (1967) Skin grafting in the bisexual teiid lizard Cnemidophorus sexlineatus and in the unisexual C. tesselatus. J Expt Zool 166: 137–150

    Article  CAS  Google Scholar 

  • Maynard Smith J (1962) Disruptive selection, polymorphism and sympatric speciation. Nature 195: 60–62

    Article  Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J (ed) Evolution as a process. Allen and Unwin, London, pp. 157–180

    Google Scholar 

  • Menken SBJ, Smit E, Nijs HCMD (1995) Genetical population structure in plants: gene flow between diploid sexual and triploid Asexual Dandelions (Taraxacum Section Ruderalia). Evolution 49: 1108–1118

    Article  Google Scholar 

  • Michaels HJ, Bazzaz FA (1989) Individual and population responses of sexual and apomictic plants to environmental gradients. Am Nat 134: 190–207

    Article  Google Scholar 

  • Mitter C, Futuyma DJ, Schneider JC, Hare JD (1979) Genetic variation and host plant relations in a parthenogenetic moth. Evolution 33: 777–790

    Article  Google Scholar 

  • Moore WS (1975) Stability of unisexual-bisexual populations of Poeciliopsis (Pisces: Poeciliidae). Ecology 56: 791–808

    Article  Google Scholar 

  • Moore WS (1977) An evaluation of narrow hybrid zones in vertebrates. Q Rev Biol 52: 263–277

    Article  Google Scholar 

  • Moore WS (1984) Evolutionary ecology of unisexual fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp. 329–398

    Google Scholar 

  • Moore WS, McKay FE (1971) Coexistence in unisexual-bisexual species complexes of Poeciliopsis (Pisces: Poeciliidae). Ecology 52: 791–799

    Article  Google Scholar 

  • Moore WS, Miller RR, Schultz RJ (1970) Distribution, adaptation and probable origin of an all-female form of Poeciliopsis (Pisces: Poeciliidae) in northwestern Mexico. Evolution 24: 789–795

    Article  Google Scholar 

  • Moritz C, Brown WM, Densmore LD, Wright JW, Vyas D, Donnellan S, Adams M, Baverstock P (1989) Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekonidae). In: Dawley R, Bogart J (eds) Evolution and ecology of unisexual vertebrates. Bulletin 466, New York State Museum, Albany, New York, pp. 87–112

    Google Scholar 

  • Myers MJ, Meyer CP, Resh VH (2000) Neritid and thiarid gastropods from French Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (active, passive) affect population structure. Freshw Biol 44: 535–545

    Article  Google Scholar 

  • Negovetic S, Anholt BR, Semlitsch RD, Reyer H-U (2001) Specific responses of sexual and hybridogenetic European waterfrog tadpoles to temperature. Ecology 82: 766–774

    Google Scholar 

  • Niklasson M (1995) Clonal diversity and individual adaptability in two colonizing parthenogenetic insects. PhD dissertation, Lund University, Lund, Sweden

    Google Scholar 

  • Niklasson M, Parker ED Jr (1994) Fitness variation in an invading parthenogenetic cockroach. Oikos 71: 47–54

    Article  Google Scholar 

  • Niklasson M, Tomiuk J, Parker ED Jr (2004) Maintenance of clonal diversity in Dipsa bifurcata (Fallén, 1810) (Diptera: Lonchopteridae). I. Fluctuating seasonal selection moulds long-term coexistence. Heredity 93: 62–71

    Article  PubMed  CAS  Google Scholar 

  • Ochman HB, Stille B, Niklasson M, Selander RK (1980) Evolution of clonal diversity in the parthenogenetic fly Lonchoptera dubia. Evolution 34: 539–547

    Article  Google Scholar 

  • Parker ED Jr (1979) Ecological implications of clonal diversity in parthenogenetic morphospecies. Am Zool 19: 753–762

    Google Scholar 

  • Parker ED Jr (2002) Geographic parthenogenesis in terrestrial invertebrates: generalist or specialist clones? In: Hughes RN (ed) Progress in asexual propagation and reproductive strategies. Oxford-IBH, Oxford, pp. 93–114

    Google Scholar 

  • Parker ED Jr, Niklasson M (1995) Desiccation resistance in invading parthenogenetic cockroaches: a search for the general purpose genotype. J Evol Biol 8: 331337

    Article  Google Scholar 

  • Parker ED Jr, Niklasson M (2000) Genetic structure and evolution in parthenogenetic animals. In: Singh R, Krimbas C (eds) Evolutionary genetics from molecules to morphology. Cambridge University Press, Cambridge, UK, pp. 456–474

    Google Scholar 

  • Parker ED Jr, Selander RK (1976) The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics 84: 791–805

    PubMed  Google Scholar 

  • Parker ED Jr, Selander RK, Hudson RO, Lester LJ (1977) Genetic diversity in colonizing parthenogenetic cockroaches. Evolution 31: 836–842

    Article  Google Scholar 

  • Paulissen MA, Walker JM, Cordes JE (1988) Ecology of syntopic clones of the parthenogenetic whiptail lizard, Cnemidophorus ‘laredoensis’. J Herpetol 22: 331–342

    Article  Google Scholar 

  • Pearson CVM, Rogers AD, Sheader M (2002) The genetic structure of the rare lagoonal sea anemone, Nematostella vectensis Stephenson (Cnidaria; Anthozoa) in the United Kingdom based on RAPD analysis. Mol Ecol 11: 2285–2293

    Article  PubMed  CAS  Google Scholar 

  • Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391: 889–892

    Article  CAS  Google Scholar 

  • Pound GE, Cox SJ, Doncaster CP (2004) The accumulation of deleterious mutations within the frozen niche variation hypothesis. J Evol Biol 17: 651–662

    Article  PubMed  CAS  Google Scholar 

  • Pound GE, Doncaster CP, Cox SJ (2002) A Lotka-Volterra model of coexistence between a sexual population and multiple asexual clones. J Theor Biol 217: 535–545

    Article  PubMed  Google Scholar 

  • Price AH (1986) The ecology and evolutionary implications of competition and parthenogenesis in Cnemidophorus. PhD dissertation, New Mexico State University, Las Cruces, NM

    Google Scholar 

  • Radtkey RR, Donnellan SC, Fisher RN, Moritz C, Hanley KA, Case TJ (1995) When species collide: the origin and spread of an asexual species of gecko. Proc R Soc Lond B 259: 145–152

    Article  Google Scholar 

  • Rist L, Semlitsch RD, Hotz H, Reyer H-U (1996) Feeding behaviour, food consumption and growth efficiency of hemiclonal and parental tadpoles of the Rana esculenta complex Funct Ecol 11: 735–742

    Article  Google Scholar 

  • Robinson MT, Weeks AR, Hoffmann AA (2002) Geographic patterns of clonal diversity in the earth mite species Penthaleus major with particular emphasis on species margins. Evolution 56: 1160–1167

    PubMed  Google Scholar 

  • Rossi V, Benassi G, Leonardi S, Piotti A, Menozzi P (2006) Clonal diversity of Heterocypris incongruens (Crustacea: Ostracoda) in Northern Italian ricefields. Arch Hydrobiol 166: 225–240

    Article  Google Scholar 

  • Rossi V, Menozzi P (1993) The clonal ecology of Heterocypris incongruens (Ostracoda): life-history traits and photoperiod. Funct Ecol 7: 177–182

    Article  Google Scholar 

  • Roughgarden J (1972) Evolution of niche width. Am Nat 106: 683–718

    Article  Google Scholar 

  • Saura A, Lokki J, Lankinen P, Suomalainen E (1976a) Genetic polymorphism and evolution in parthenogenetic animals. III. Tetraploid Otiorrhynchus scaber (Coleoptera: Curculionidae). Hereditas 82: 79–100

    Article  PubMed  CAS  Google Scholar 

  • Saura A, Lokki J, Lankinen P, Suomalainen E (1976b) Genetic polymorphism and evolution in parthenogenetic animals. IV. Triploid Otiorrhynchus salicis Strom (Coleoptera: Curculionidae). Entomol Scand 7: 1–6

    Google Scholar 

  • Schenck RA, Vrijenhoek RC (1986) Spatial and temporal factors affecting coexistence among sexual and clonal forms of Poeciliopsis. Evolution 40: 1060–1070

    Article  Google Scholar 

  • Schley D, Doncaster CP, Sluckin T (2004) Population models of sperm-dependent parthenogenesis. J Theor Biol 229: 559–572

    Article  PubMed  Google Scholar 

  • Schön I, Butlin RK, Griffiths HI, Martens K (1998) Slow molecular evolution in an ancient asexual ostracod. Proc R Soc Lond B 265: 235–242

    Article  Google Scholar 

  • Schlosser IJ, Doeringsfeld MR, Elder J, F. AL (1998) Niche relationships of clonal and sexual fish in a heterogeneous landscape. Ecology 79: 953–968

    Article  Google Scholar 

  • Schultz RJ (1971) Special adaptive problems associated with unisexual fishes. Am Zool 11: 351–360

    Google Scholar 

  • Schultz RJ (1973) Unisexual fish: laboratory synthesis of a “species”. Science 179: 180–181

    Article  PubMed  CAS  Google Scholar 

  • Schultz RJ, Fielding E (1989) Fixed genotypes in variable environments. In: Dawley R, Bogart J (eds) Evolution and ecology of unisexual vertebrates. New York State Museum, Albany, New York, pp. 32–38

    Google Scholar 

  • Scudday JR (1973) A new species of lizard of the Cnemidophorus tesselatus group from Texas. J Herpetol 7: 363–371

    Article  Google Scholar 

  • Semlitsch RD (1993) Asymmetric competition in mixed populations of tadpoles of the hybridogenetic Rana esculenta complex. Evolution 47: 510–519

    Article  Google Scholar 

  • Semlitsch RD, Hotz H, Guex G-D (1997) Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model. Evolution 51: 1249–1261

    Article  Google Scholar 

  • Service P (1984) Genotypic interactions in an aphid-host plant relationship: Uroleucon rudbeckiae and Rudbeckia laciniata. Oecologia V61: 271–276

    Article  Google Scholar 

  • Service PM, Lenski RE (1982) Aphid genotypes, plant genotypes and genetic diversity: a demographic analysis of experimental data. Evolution 36: 1276–1282

    Article  Google Scholar 

  • Snell TW (1979) Intraspecific competition and population structure in rotifers. Ecology 60: 494–502

    Article  Google Scholar 

  • Solbrig O (1971) The population biology of dandelions. Am Sci 59: 686–694

    Google Scholar 

  • Solbrig OT, Simpson BB (1974) Components of regulation of a population of dandelions in Michigan. J Ecol 62: 473–486

    Article  Google Scholar 

  • Solbrig OT, Simpson BB (1977) A garden experiment on competition between biotypes of the common dandelion (Taraxacum officinale). J Ecol 65: 427–430

    Article  Google Scholar 

  • Stalker HD (1954) Parthenogenesis in Drosophila. Genetics 39: 4–34

    PubMed  CAS  Google Scholar 

  • Stenseth NC, Kirkendall LR, Moran N (1985) On the evolution of pseudogamy. Evolution 39: 294–307

    Article  Google Scholar 

  • Stratton DA (1994) Genotype-by-environment interactions for fitness of Erigeron annuus show fine-scale selective heterogeneity. Evolution 48: 1607–1618

    Article  Google Scholar 

  • Strobeck C (1970) Haploid selection with n alleles in m niches. Am Nat 113: 439–444

    Article  Google Scholar 

  • Strobeck C (1974) Sufficient conditions for polymorphism with N niches and M mating groups. Am Nat 108: 152–156

    Article  Google Scholar 

  • Sunnucks P, England PR, Taylor AC, Hales DF (1996) Microsatellite and chromosome evolution of parthenogenetic Sitobion aphids in Australia. Genetics 144: 747–756

    PubMed  CAS  Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton

    Google Scholar 

  • Tagg N, Doncaster CP, Innes DJ (2005b) Resource competition between genetically varied and genetically uniform populations of Daphnia pulex (Leydig): does asexual reproduction confer a short-term ecological advantage? Biol J Linn Soc 85: 11–123

    Article  Google Scholar 

  • Tagg N, Innes DJ, Doncaster CP (2005a) Outcomes of reciprocal invasions between genetically diverse and genetically uniform populations of Daphnia obtusa (Kurz). Oecologia 143: 527–536

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (1982) The prophecies of parthenogenesis. In: Dingle H, Hegmann JP (eds) Evolution and genetics of life histories. Springer-Verlag, Berlin, pp. 75–102

    Google Scholar 

  • Thibault RE (1978) Ecological and evolutionary relationships among diploid and triploid unisexual fishes associated with the bisexual species, Poeciliopsis lucida (Cyprinodontiformes: Poeciliidae). Evolution 32: 613–623

    Article  Google Scholar 

  • Tomiuk J, Niklasson M, Parker ED Jr (2004) Maintenance of clonal diversity in Dipsa bifurcata (Fallén, 1810) (Diptera: Lonchopteridae). II. Diapause stabilizes clonal coexistence. Heredity 93: 72–77

    Article  PubMed  CAS  Google Scholar 

  • Tomiuk J, Wöhrman K (1981) Changes in genotype frequencies at the MDH-locus in populations of Macrosiphum rosae (L.) (Hem., Aphididae). Biol Zentralbl 100: 631–640

    Google Scholar 

  • Tomlinson J (1966) The advantage of hermaphroditism and parthenogenesis. J Theor Biol 11: 54–58

    Article  PubMed  CAS  Google Scholar 

  • Tunner HG, Nopp H (1979) Heterosis in the common European water frog. Naturwissenschaften 66: 268–269

    Article  PubMed  CAS  Google Scholar 

  • Van Doninck K, Schön I, De Bruyn L, Martens K (2002) A general purpose genotype in an ancient asexual. Oecologia 132: 205–212

    Article  Google Scholar 

  • Van Doninck K, Schön I, Maes F, De Bruyn L, Martens K (2003) Ecological strategies in the ancient asexual animal group Darwinulidae (Crustacea, Ostracoda). Freshwater Biol 48: 1285–1294

    Article  Google Scholar 

  • Vandel A (1928) La parthénogénèse géographique contribution a l`étude biologique et cytologique de la parthénogénèse naturelle. Bull Biol France Belg 62: 164–281

    Google Scholar 

  • Vandel A (1940) La parthénogénèse géographique. IV. Polyploidie et distribution géographique. Bull Biol France Belg 74: 94–100

    Google Scholar 

  • Vavrek MC, McGraw JB, Yang HS (1996) Within-population variation in demography of Taraxacum officinale: Maintenance of genetic diversity. Ecology 77: 2098–2107

    Article  Google Scholar 

  • Vorburger C, Lancaster M, Sunnucks P (2003b) Environmentally related patterns of reproductive modes in Myzus persicae and the predominance of two ‘superclones’ in Victoria, Australia. Mol Ecol 12: 3493–3503

    Article  PubMed  CAS  Google Scholar 

  • Vorburger C, Sunnucks P, Ward SA (2003a) Explaining the coexistence of asexuals with their sexual progenitors: no evidence for general-purpose genotypes in obligate parthenogens of the peach-potato aphid, Myzus persicae. Ecol Lett 6: 1091–1098

    Article  Google Scholar 

  • Vrijenhoek RC (1978) Coexistence of clones in a heterogeneous environment. Science 199: 549–552

    Article  PubMed  CAS  Google Scholar 

  • Vrijenhoek RC (1979) Factors affecting clonal diversity and coexistence. Am Zool 19: 787–797

    Google Scholar 

  • Vrijenhoek RC (1984) Ecological differentiation among clones: the frozen niche variation model. In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer-Verlag, Heidelberg, pp. 217–231

    Google Scholar 

  • Vrijenhoek RC (1985) Animal population genetics and disturbance: the effects of local extinctions and recolonizations on heterozygosity and fitness. In: Pickett STA, White P (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp. 265–285

    Google Scholar 

  • Vrijenhoek RC (1989a) Genetic and ecological constraints on the origins and establishment of unisexual vertebrates. In: Dawley R, Bogart J (eds) Evolution and ecology of unisexual vertebrates. New York State Museum, Albany, New York, pp. 24–31

    Google Scholar 

  • Vrijenhoek RC (1989b) Genotypic diversity and coexistence among sexual and clonal forms of Poeciliopsis. In: Otte D, Endler J (eds) Speciation and Its Consequences. Sinauer Associates, Sunderland, pp. 386–400

    Google Scholar 

  • Vrijenhoek RC (1990) Genetic diversity and the ecology of asexual populations. In: Wöhrmann K, Jain S (eds) Population biology and evolution. Springer-Verlag, Berlin, pp. 175–197

    Google Scholar 

  • Vrijenhoek RC (1998a) Animal clones and diversity. Bioscience 48: 617–628

    Article  Google Scholar 

  • Vrijenhoek RC (1998b) Clonal organisms and the benefits of sex. In: Carvalho G (ed) Advances in molecular ecology. IOS Press, Amsterdam, pp. 151–172

    Google Scholar 

  • Vrijenhoek RC, Angus RA, Schultz RJ (1977) Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis. Evolution 31: 767–781

    Article  Google Scholar 

  • Vrijenhoek RC, Angus RA, Schultz RJ (1978) Variation and clonal structure in a unisexual fish. Am Nat 112: 41–55

    Article  Google Scholar 

  • Vrijenhoek RC, Lerman S (1982) Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–776

    Article  Google Scholar 

  • Vrijenhoek RC, Pfeiler E (1997) Differential survival of sexual and asexual Poeciliopsis during environmental stress. Evolution 51: 1593–1600

    Article  Google Scholar 

  • Wallace B (1959) The influence of genetic systems on geographic distribution. Cold Spr Harb Symp Quant Biol 24: 193–205

    CAS  Google Scholar 

  • Weeks A, Hoffmann A (1998) Intense selection of mite clones in a heterogeneous environment. Evolution 52: 1325–1333

    Article  Google Scholar 

  • Weeks SC (1993) The effects of recurrent clonal formation on clonal invasion patterns and sexual persistence: a Monte Carlo simulation of the frozen niche variation model. Am Nat 141: 409–427

    Article  PubMed  CAS  Google Scholar 

  • Weeks SC (1995) Comparisons of life-history traits between clonal and sexual fish (Poeciliopsis: Poeciliidae) raised in monoculture and mixed treatments. Evol Ecol 9: 258–274

    Article  Google Scholar 

  • Weeks SC, Gaggiotti OE, Spindler KP, Schenck RE, Vrijenhoek RC (1992) Feeding behavior in sexual and clonal strains of Poeciliopsis. Behav Biol Sociobiol 30: 1–6

    Google Scholar 

  • Weider LJ (1989) Spatial heterogeneity and clonal structure in arctic populations of apomictic Daphnia. Ecology 70: 1405–1413

    Article  Google Scholar 

  • Weider LJ (1993) A test of the “general-purpose” genotype hypothesis: differential tolerance to thermal and salinity stress among Daphnia clones. Evolution 47: 965–969

    Article  Google Scholar 

  • Weider LJ, Hebert PDN (1987) Ecological and physiological differentiation among low-Arctic clones of Daphnia pulex. Ecology 68: 188–198

    Article  Google Scholar 

  • Weinzierl RP, Beukeboom LW, Gerace L, Michiels NK (1999) Spatial and ecological overlap between coexisting sexual and parthenogenetic Schmidtea polychroa (Tricladida; Platyhelminthes) Hydrobiologia 39: 170–185

    Google Scholar 

  • Weisman A (1889) The significance of sexual reproduction in the theory of natural selection. In: Poulton EB, Schonland S, Shipley AE (eds) Essays upon heredity and kindred biological problems. Oxford University Press, Oxford, pp. 254–338

    Google Scholar 

  • West SA, Lively CM, Read AF (1999) A pluralistic approach to sex and recombination. J Evol Biol 12: 1003–1012

    Article  Google Scholar 

  • West SA, Peters AD (2000) Evolution: paying for sex is not easy. Nature 407: 962

    Article  PubMed  CAS  Google Scholar 

  • Wetherington JD, Kotora KE, Vrijenhoek RC (1987) A test of the spontaneous heterosis hypothesis for unisexual vertebrates. Evolution 41: 721–731

    Article  Google Scholar 

  • Wetherington JD, Schenck RA, Vrijenhoek RC (1989a) Origins and ecological success of unisexual Poeciliopsis: the Frozen Niche Variation model. In: Meffe GA, Snelson FF, Jr (eds) The ecology and evolution of poeciliid fishes. Prentice Hall, Englewood Cliffs, pp. 259–276

    Google Scholar 

  • Wetherington JD, Weeks SC, Kotora KE, Vrijenhoek RC (1989b) Genotypic and environmental components of variation in growth and reproduction of fish hemiclones (Poeciliopsis: Poeciliidae). Evolution 43: 635–645

    Article  Google Scholar 

  • White MJD (1970) Heterozygosity and genetic polymorphism in parthenogenetic animals. In: Hecht MK, Steere WC (eds) Essays in evolution and genetics in honor of Theodosius Dobzhansky. Appleton-Century-Crofts, New York

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • White MJD (1978) Modes of speciation. WH Freeman, San Francisco

    Google Scholar 

  • Wilbur HM (1971) The ecological relationship of the salamander Ambystoma laterale to its all-female, gynogenetic associate. Evolution 25: 168–179

    Article  Google Scholar 

  • Williams GC (1975) Sex and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Williams GC, Mitton JB (1973) Why reproduce sexually? J Theor Biol 39: 545–554

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Sunnucks, CP, Hales DF (1999) Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand. Mol Ecol 8: 1655–1666

    Article  PubMed  Google Scholar 

  • Wright JW, Lowe CH (1968) Weeds, polyploids, parthenogenesis and the geographical and ecological distribution of all-female species of Cnemidophorus. Copeia 1968: 128–138

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the C. Patrick Doncaster and the editors for helpful suggestions and clarifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Vrijenhoek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vrijenhoek, R.C., Parker, E.D. (2009). Geographical Parthenogenesis: General Purpose Genotypes and Frozen Niche Variation. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_6

Download citation

Publish with us

Policies and ethics