Skip to main content

Cytology of Asexual Animals

  • Chapter
  • First Online:
Lost Sex

Abstract

We review the cytological mechanisms underlying asexual reproduction, i.e. reproduction without fertilization, in animals. Asexuality or parthenogenesis has evolved many times and the cytological mechanisms to restore the parental chromosome number can vary between and even within species. In automictic or meiotic parthenogenesis, meiosis takes place but the chromosomal constitution of the mother is restored through one or several different mechanisms. Some of these mechanisms enforce homozygosity at all loci while some other mechanisms pass the genome of the mother intact to the offspring. In apomictic or mitotic parthenogenesis the eggs are formed through what is essentially a set of mitoses. Polyploidy, is in general incompatible with chromosomal sex determination and is a rare condition in animals. However, many asexual and hermaphroditic forms are polyploid to various degrees. Polyploidy is divided into allo- and autopolyploidy. In the former mode the chromosome sets are derived from two or more different species while in autopolyploidy the multiplication has taken place within one species. We discuss the evolutionary consequences of the different cytological mechanisms involved in asexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asher J Jr (1970) Parthenogenesis and genetic variability. PhD thesis. University of Michigan, Ann Arbor

    Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Balsano JS, Rasch EM, Monaco PJ (1989) The evolutionary ecology of Poecilia formosa and its triploid associate. In: Meffe GK, Snelson FF (eds) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, Englewood Cliffs, pp. 277–297

    Google Scholar 

  • Beukeboom LW, Pijnacker LP (2000) Automictic parthenogenesis in the parasitoid Venturia canescens (Hymeoptera: Ichneumonidae) revisited. Genome 43: 939–944

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein SR, Werren JH (2007) Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity 99: 278–287

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005). From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell, Oxford

    Google Scholar 

  • Cuellar O (2005) Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J Morphol 133: 139–165

    Article  Google Scholar 

  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a “standard” soil arthropod. Annu Rev Ent 50: 201–222

    Article  CAS  Google Scholar 

  • Holloway AK, Cannatella DC, Gerhart HC, Hillis DM (2006) Polyploids with different origins and ancestors from a single sexual polyploid species. Am Nat 167: E88–E101

    Article  PubMed  Google Scholar 

  • Hsu WS (1956) Oogenesis in Habrotricha tridens (Milne). Biol Bull 111: 364–374

    Article  Google Scholar 

  • Lewis WH (ed.) (1980) Polyploidy/biological relevance. Plenum, New York

    Google Scholar 

  • Lundmark M, Saura A (2006) Asexuality does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas 143: 24–33

    Article  Google Scholar 

  • Ma XF, Gustafson JP (2005) Genome evolution in allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109: 236–249

    Article  CAS  PubMed  Google Scholar 

  • Mark Welch JL, Mark Welch DB, Meselson M (2004) Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proc Natl Acad Sci 101: 1618–1621

    Article  PubMed  Google Scholar 

  • Monaco PJ, Rasch EM, Balsano JS (1984) Apomictic reproduction in the Amazon molly, Poecilia formosa, and its triploid hybrids. In: Turner BJ (ed.) Evolutionary genetics of fishes. Plenum Press, New York, pp. 311–328

    Google Scholar 

  • Narbel-Hofstetter M (1964) Les altérations de la meiose chez les animaux parthénogénétiques. Protoplasmatologia VI. F2. Springer-Verlag, Wien

    Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993). Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York, pp. 8–99

    Google Scholar 

  • Nur U (1979) Gonoid thelytoky in soft scale insects (Coccoidea: Homoptera). Chromosoma 72: 89–104

    Article  Google Scholar 

  • Pagani M, Ricci R, Redi CA (1993) Oogenesis in Macrotrachela quadricornifera (Rotifera, Bdelloidea). Hydrobiologia 255–256: 225–230

    Article  Google Scholar 

  • Plantard O, Rasplus J-Y, Mondor G, Le Clainche I, Solignac M (1998) Wolbachia-induced thelytoky in the rose gallwasp Diplolepis spinosissimae (Giraud)(Hymenoptera: Cynipidae), and its consequences on the genetic structure of its host. Proc R Soc Lond B 265: 1075–1090

    Article  Google Scholar 

  • Saura A, Lokki J, Suomalanen E (1993) Origin of polyploidy in parthenogenetic weevils. J Theor Biol 163: 449–456

    Article  Google Scholar 

  • Seiler J (1961) Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae) III. Die geographische Verbreitung der drei Rassen von Solenobia triquetrella (bisexuell, diploid und tetraploid parthenogenetisch) in der Schweiz und in angrenzenden Ländern und die Beziehungen zur Eiszeit. Bemerkungen über die Entstehung der Parthenogenese. Z Vererbungsl 92: 261–316

    Article  Google Scholar 

  • Seiler J (1963) Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae). IV. Wie besamen begattete diploid und tetraploid parthenogenetische Weibchen von S. triquetrella ihre Eier? Schicksal der Richtingskörper im unbesamten und besamten Ei. Vergleich der Ergebnisse mit F1-Aufzuchten und Beziehungen zur Genese der Parthenogenese. Z Vererbungsl 94: 29–66

    Article  Google Scholar 

  • Simonsen V, Holmstrup M (2008). Deviation from apomictic reproduction in Dendrobaena octaedra? Hereditas 145: 212–214

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97: 7051–7057

    Article  CAS  PubMed  Google Scholar 

  • Spitzer B (2006) Local maladaptation in the soft scale insect Saissetia coffeae Hemiptera: Coccidae. Evolution 60: 1859–1867.

    PubMed  Google Scholar 

  • Stenberg P, Lundmark M, Knutelski S, Saura A (2003) Evolution of clonality and polyploidy in a weevil system. Mol Biol Evol 20: 1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton

    Google Scholar 

  • Terhivuo J, Saura A (2006) Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol Inv 8: 1205–1218

    Article  Google Scholar 

  • Van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Frontiers Zool 3: 1

    Article  Google Scholar 

  • von Siebold C (1856) Wahre Parthenogenesis bei Schmetterlingen und Bienen. Engelmann, Leipzig

    Google Scholar 

  • Weeks AR, Braeuwer JAJ (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond B 268: 2245–2251

    Article  CAS  Google Scholar 

  • White MJD (1946) The evidence against polyploidy in sexually reproducing animals. Am Nat 80: 610–619

    Article  Google Scholar 

  • White MJD (1970) Heterozygosity and genetic polymorphism in parthenogenetic animals. In: Hecht MK, Steere WC (eds) Essays in evolution and genetics in honour of Theodosus Dobzhansky, suppl. Evol Biol. Appleton-Century-Crofts, New York

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3rd ed. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Zhu HP, Ma DM, Gui JF (2006) Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res 14: 767–776

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Stenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stenberg, P., Saura, A. (2009). Cytology of Asexual Animals. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_4

Download citation

Publish with us

Policies and ethics