Skip to main content

What’s in a Clone: The Rapid Evolution of Aphid Asexual Lineages in Relation to Geography, Host Plant Adaptation and Resistance to Pesticides

  • Chapter
  • First Online:
Lost Sex

Abstract

The term “clone”, coined over a hundred years ago (see Chapter 9), is still in common parlance and widely used throughout the world, but its usage depends on definition, which is still obscure, especially if this involves the concept of genetic fidelity between clone mates rather than just the offspring from an asexual female founder (more correctly, an asexual lineage). To date, there have been no DNA sequencing studies proving such fidelity; on the contrary, the various DNA molecular marker studies performed on aphids display widespread genetic variation within and between different clonal lineages, as expected since mutation is a fundamental property of the DNA and hence the genome itself. In this overview, I use aphids as a model system to show that, rather than being an unchanging evolutionary “dead end”, asexual aphid lineages show rapid and widespread adaptive changes to changing ecological conditions in the field, including in relation to geography, host plant factors, and to insecticide applications. This being so, the so-called clone cannot be a fixed entity in time and space, but like all other living organisms in the real world, is evolving in response to its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further details on aphid life cycles, refer to Blackman and Eastop (2000), Carter et al. (1980) and Dixon (1998).

  2. 2.

    FE4 is a fast allelic variant of the typical and more frequent E4 gene product.

  3. 3.

    Since writing this article, Ihave found a reference to the occurrence of rare Trama males and oviparae, at least in T. troglodytes, which may possibly be sexually functional according to the authors. see: Blackman RL, De Boise E, Czylok A (2001) Occurrence of sexual morphs in Trama troglodytes von Heyden, 1837 (Hemiptera, Aphididae).Journal of Natural History, 35: 779–785

References

  • Anstead JA, Burd JD, Shufran KA (2002) Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera: Aphididae) clones from cultivated and non-cultivated hosts: haplotype and host associations. Bull Entomol Res 92: 17–24

    PubMed  CAS  Google Scholar 

  • Anstead JA, Mallet J, Denholm I (2007) Temporal and spatial incidence of alleles conferring knockdown resistance to pyrethroids in the peach-potato aphid Myzus persicae (Hemiptera: Aphididae) and their association with other insecticide resistance mechanisms. Bull Entomol Res 97: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Anstead JA, Williamson MS, Denholm I (2005) Evidence for multiple origins of identical insecticide resistance mutations in the aphid Myzus persicae. Insect Biochem Mol 35: 249–256

    Article  CAS  Google Scholar 

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97: 14473–14477

    Article  PubMed  CAS  Google Scholar 

  • Barraclough TG, Fontaneto D, Ricci C, Herniou EA (2007) Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol Biol Evol 24: 1952–1962

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Charlesworth, B (1998) Why sex and recombination? Science 281: 1986–1989

    Article  PubMed  CAS  Google Scholar 

  • Bauer JA (2002) Research on the Roan (re: Woolly Balsam Adelgid) The Tennessee Conservationist wwwstatetnus/environment/tn_consv/archive/roanehtm

    Google Scholar 

  • Begin M, Schoen DJ (2006) Low impact of germline transposition on the rate of mildly deleterious mutation in Caenorhabditis elegans. Genetics 174: 2129–2136

    Article  PubMed  CAS  Google Scholar 

  • Behura SK (2006) Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15: 3087–3113

    Article  PubMed  CAS  Google Scholar 

  • Birky CW, Wolf C, Maughan H, Hebertson L, Henry E (2005) Speciation and selection without sex. Hydrobiologia 546: 29–45

    Article  CAS  Google Scholar 

  • Blackman RL (1971) Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz). Bull Entomol Res 60: 533–546

    Article  Google Scholar 

  • Blackman RL (1980) Chromosomes and parthenogenesis in aphids. In: Blackman RL, Hewitt GM, Ashburner M (eds) Insect cytogenetics, 10th Symposium of the Royal Entomological Society. Blackwell Scientific Publ, Oxford, pp. 133–148

    Google Scholar 

  • Blackman RL, Brown PA, Furk C, Seccombe AD, Watson GW (1989) Enzyme differences within species groups containing pest aphids In: Loxdale HD, den Hollander J (eds), Electrophoretic studies on agricultural pests. Systematics association special volume No. 39. Clarendon Press, Oxford, pp. 271–295

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops: An identification and information guide (2nd edition). John Wiley and Sons Ltd, Chichester

    Google Scholar 

  • Blackman RL, Spence JM, Field LM, Devonshire AL (1995) Chromosomal location of the amplified esterase genes conferring resistance to insecticides in Myzus persicae (Homoptera: Aphididae). Heredity 75: 297–302

    Article  CAS  Google Scholar 

  • Blackman RL, Spence JM, Normark BB (2000) High diversity of structurally heterozygous karyotypes and rDNA arrays in parthenogenetic aphids of the genus Trama (Aphididae: Lachninae). Heredity 84: 254–260

    Article  PubMed  CAS  Google Scholar 

  • Bowden J, Johnson CG (1976) Migrating and other terrestrial insects at sea. In: Cheng L (ed) Marine insects. North-Holland Publ, Amsterdam, pp. 97–117

    Google Scholar 

  • Brown PA, Blackman RL (1988) Karyotype variation in the corn leaf aphid Rhopalosiphum maidis (Fitch) species complex (Hemiptera: Aphididae) in relation to host-plant and morphology. Bull Entomol Res 78: 351–363

    Article  Google Scholar 

  • Browne J (1996) Charles Darwin: Voyaging. Volume 1 of a biography. Pimlico London, p. 363

    Google Scholar 

  • Caillaud M, Edwards O, Field L, Giblot-Ducray D, Gray S, Hawthorne D, Hunter W, Jander G, Moran N, Moya A, Nakabachi A, Robertson H, Shufran K, Simon J-C, Stern, D, Tagu D (2004) Proposal to sequence the genome of the pea aphid (Acyrthosiphon pisum) http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/AphidSeq.pdf

  • Carter N, McLean IFG, Watt AD, Dixon AFG (1980) Cereal aphids: a case study and review. Appl Biol 5: 271–348

    Google Scholar 

  • De Barro PJ, Sherratt T, Wratten S, Maclean N (1994) DNA fingerprinting of cereal aphids using (GATA)4. Eur J Entomol 91: 109–114

    Google Scholar 

  • De Barro PJ, Sherratt TN, Brookes CP, David O, Maclean N (1995a) Spatial and temporal variation in British field populations of the grain aphid Sitobion avenae (F) (Hemiptera: Aphididae) studied using RAPD-PCR. Proc R Soc Lond B 262: 321–327

    Article  Google Scholar 

  • De Barro PJ, Sherratt TN, David O, Maclean N (1995b) An investigation of the differential performance of clones of the aphid S. avenae on two hosts. Oecologia 104: 379–385

    Article  Google Scholar 

  • Delmotte F, Leterme N, Bonhomme J, Rispe C, Simon J-C (2001) Multiple routes to asexuality in an aphid. Proc R Soc Lond B 268: 2291–2299

    Article  CAS  Google Scholar 

  • Delmotte F, Sabater-Munoz B, Prunier-Leterme N, Latorre A, Sunnucks P, Rispe C, Simon J-C (2003) Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57: 1291–1303

    PubMed  CAS  Google Scholar 

  • Denholm I, Pickett JA, Devonshire AL (eds) (1999) Insecticide resistance: From mechanisms to management. CABI Publishing, Wallingford, Oxford

    Google Scholar 

  • Devonshire AL (1989) The role of electrophoresis in the biochemical detection of insecticide resistance In: Loxdale HD, den Hollander J (eds), Electrophoretic studies on agricultural pests. Clarendon Press, Oxford, pp. 363–374

    Google Scholar 

  • Devonshire AL, Moores GD, ffrench-Constant RH (1986) Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera Aphididae). Bull Entomol Res 76: 97–107

    Article  CAS  Google Scholar 

  • Dickson RC (1962) Development of the spotted alfalfa aphid population in North America. Int Kongress für Entomol (Wien 1960) 2: 26–28

    Google Scholar 

  • Dixon AFG (1989) Parthenogenetic reproduction and the rate of increase in aphids. In: Minks AK, Harrewijn P (eds) Aphids – their biology, natural enemies and control, Volume A. Elsevier, Amsterdam, pp. 269–287

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology (2nd edition). Chapman and Hall, London

    Google Scholar 

  • Drake VA, Farrow RA (1989) The ‘aerial plankton’ and atmospheric convergence. Trends Ecol Evol 4: 381–385

    Article  Google Scholar 

  • Eastop VF (1973) Biotypes of aphids In: Lowe AD (ed) Perspectives in aphid biology. Entomological Soc of New Zealand, Auckland, pp. 40–41

    Google Scholar 

  • Eastop VF (1986) Aphid-plant associations. In: Stone AR, Hawksworth DL (eds) Coevolution and systematics. Systematics Association Special Volume No. 32. Clarendon Press, Oxford, pp. 35–54

    Google Scholar 

  • Feder JL, Berlocher SH, Opp SB (1998) Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): A tale of two species for Charles D. In: Mopper S Strauss SY (eds) Genetic structure and local adaptation in natural insect populations. Chapman and Hall, New York, pp. 408–441

    Google Scholar 

  • Felsenstein, J (1974) The evolutionary advantage of recombination. Genetics 78: 737–756

    PubMed  CAS  Google Scholar 

  • Fenton B, Malloch G, Germa F (1998a) A study of variation in rDNA ITS regions shows that two haplotypes coexist within a single aphid genome. Genome 41: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Fenton B, Malloch G, Navajas M, Hillier J, Birch ANE (2003) Clonal composition of the peach–potato aphid Myzus persicae (Homoptera: Aphididae) in France and Scotland: Comparative analysis with IGS fingerprinting and microsatellite markers. Ann Appl Biol 142: 255–267

    Article  CAS  Google Scholar 

  • Fenton B, Malloch G, Woodford JAT, Foster SP, Anstead J, Denholm I, King L, Pickup J (2005) The attack of the clones: tracking the movement of insecticide resistant peach–potato aphids Myzus persicae (Hemiptera: Aphididae). Bull Entomol Res 95: 483–494

    Article  PubMed  CAS  Google Scholar 

  • Fenton B, Woodford JAT, Malloch G (1998b) Analysis of clonal diversity of the peach-potato aphid Myzus persicae (Sulzer) in Scotland UK and evidence for the existence of a predominant clone. Mol Ecol 7: 1475–1487

    Article  PubMed  CAS  Google Scholar 

  • Field LM, Blackman RL (2003) Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biol J Linn Soc 79: 107–113

    Article  Google Scholar 

  • Field LM, Blackman RL, Tyler-Smith C, Devonshire AL (1999) Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J 339: 737–742

    Article  PubMed  CAS  Google Scholar 

  • Figueroa CC, Simon J-C, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver C-A, Niemeyer HM (2005) Genetic structure and clonal diversity of an introduced pest in Chile-the cereal aphid Sitobion avenae. Heredity 95: 24–33

    Article  PubMed  CAS  Google Scholar 

  • Forneck A, Walker MA, Blaich R (2001a) An in vitro assessment of phylloxera (Daktulosphaira vitifoliae Fitch) (Hom., Phylloxeridae) life cycle. J Appl Entomol 125: 443–447

    Article  Google Scholar 

  • Forneck A, Walker MA, Blaich R (2001b) Ecological and genetic aspects of grape phylloxera (Daktulosphaira vitifoliae Fitch) performance on rootstock hosts. Bull Entomol Res 91: 445–451

    PubMed  CAS  Google Scholar 

  • Foster SP, Denholm I, Devonshire AL (2000) The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Prot 19: 873–879

    Article  CAS  Google Scholar 

  • Foster SP, Denholm I, Harling ZK, Moores GD, Devonshire AL (1998) Intensification of insecticide resistance in UK field populations of the peach-potato aphid Myzus persicae (Hemiptera: Aphididae) in 1996. Bull Entomol Res 88: 127–130

    Article  Google Scholar 

  • Foster SP, Devine G, Devonshire AL (2007b) Insecticide resistance. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, Oxford, pp. 261–286

    Chapter  Google Scholar 

  • Foster SP, Harrington R, Dewar AM, Denholm I, Devonshire AL (2002) Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Sulzer). Pest Manag Sci 58: 895–907

    Article  PubMed  CAS  Google Scholar 

  • Foster SP, Tomiczek M, Thompson R, Denholm I, Poppy G, Kraaijeveld AR, Powell W (2007a) Behavioural side-effects of insecticide resistance in aphids increase their vulnerability to parasitoid attack. Anim Behav 74: 621–632

    Article  Google Scholar 

  • Frantz A, Plantegenest M, Mieuzet L, Simon J-C (2006) Ecological specialisation correlates with genotypic differentiation in sympatric host populations of the pea aphid. J Evol Biol 19: 392–401

    Article  PubMed  CAS  Google Scholar 

  • Fry JD, Keightley PD, Heinsohn SL, Nuzhdin SV (1999) New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci USA 96: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Gilabert A, Simon J-C, Mieuzet L, Halkett F, Stoeckel S, Plantegenest M, Dedryver C-A (2009) Climate and agricultuarl context shape reproductive mode variation in an aphid crop pest. Mol Ecol, in press

    Google Scholar 

  • Goldansaz SH (2003) Étude comportementale et écologie chimique de la recherche d’un partenaire sexuel chez le puceron de la pomme de terre Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) PhD Thesis, Laval University, Quebec, p. 66

    Google Scholar 

  • Goldstein DB, Schlötterer C (1999) (eds) Microsatellites: Evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, pp. 293–297

    Google Scholar 

  • Guldemond JA, Mackenzie A (1994) Sympatric speciation in aphids. I. Host race formation by escape from gene flow. In: Leather SR, Watt AD, Mill NJ, Walter KPA (eds) Individuals, populations and patterns in ecology. Intercept Ltd, Andover, Hampshire, pp. 367–378

    Google Scholar 

  • Guillemaud T, Mieuzet L, Simon J-C (2003) Spatial and temporal genetic variability in French populations of the peach–potato aphid Myzus persicae. Heredity 91: 143–152

    Article  PubMed  CAS  Google Scholar 

  • Haack L, Simon J-C, Gautheir J-P, Plantegenest M, Dedryver C-A (2000) Evidence for predominant clones in a cyclically parthenogenetic organism provided by combined demographic and genetic analyses. Mol Ecol 9: 2055–2066

    Article  PubMed  CAS  Google Scholar 

  • Hancock JM (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms In: Goldstein DB, Schlötterer C (eds) Microsatellites: Evolution and applications. Oxford University Press, Oxford, pp. 1–9

    Google Scholar 

  • Hardie J (1993) Flight behaviour in migrating insects. J Agric Entomol 10: 239–245

    Google Scholar 

  • Hardie J, Campbell CAM (1998) The flight behaviour of spring and autumn forms of the damson–hop aphid Phorodon humuli in the laboratory In: Nieto Nafria JM, Dixon AFG (eds) Aphids in natural and managed ecosystems. Universidad de León, León, pp. 205–212

    Google Scholar 

  • Hardy AC, Cheng L (1986) Studies in the distribution of insects by aerial currents. III. Insect drift over the sea. Ecol Entomol 11: 283–290

    Article  Google Scholar 

  • Harrington R (1994) Aphid layer (letter). Antenna 18: 50

    Google Scholar 

  • Harrington R et al. (2004) ‘EXAMINE’ (EXploitation of Aphid Monitoring in Europe): An EU thematic network for the study of global change impacts on aphids. In: Simon J-C, Dedryver C-A, Rispe C, Hulle M (eds) Aphids in a new millennium. Proceedings of the 6th International Aphid Symposium, Rennes 3–7 September 2001. INRA Editions, Rennes, pp. 45–49

    Google Scholar 

  • Heie OE (1987) Palaeontology and phylogeny In: Minks AK, Harrewijn P (eds) Aphids, their biology, natural enemies and control, Volume 2A. Elsevier, Amsterdam, pp. 367–391

    Google Scholar 

  • Heie OE (1994) Aphid ecology in the past and a new view on the evolution of Macrosiphini. In: Leather SR, Watt AD, Mill NJ, Walter KPA (eds) Individuals, populations and patterns in ecology. Intercept Ltd, Andover, Hampshire, pp. 409–418

    Google Scholar 

  • Helden A J, Dixon AFG (2002) Life-cycle variation in the aphid Sitobion avenae: costs and benefits of male production. Ecol Entomol 27: 692–701

    Article  Google Scholar 

  • Hick CA, Field LM, Devonshire AL (1996) Changes in methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids Myzus persicae. Insect Biochem Mol 26: 41–47

    Article  CAS  Google Scholar 

  • Hullé M, Pannetier D, Simon J-C, Vernon P, Frenot Y (2003) Aphids of sub-Antarctic Iles Crozet and Kerguelen: species diversity, host range and spatial distribution. Antarct Sci 15: 203–209

    Article  Google Scholar 

  • Janzen DH (1977) What are dandelions and aphids? Am Nat 111: 586–589

    Article  Google Scholar 

  • Jeffreys MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23: 269–286

    Article  Google Scholar 

  • Jenkins RL, Loxdale HD, Brookes CP, Dixon AFG (1999) The major carotenoid pigments of the grain aphid Sitobion avenae (F) (Hemiptera: Aphididae). Physiol Entomol 24: 171–178

    Article  CAS  Google Scholar 

  • Johnson CG (1954) Aphid migration in relation to weather. Biol Rev 29: 87–118

    Article  Google Scholar 

  • Kasprowicz L (2006) The molecular ecology and eco-physiology of the peach-potato aphid Myzus persicae. PhD Thesis, University of Dundee, Dundee

    Google Scholar 

  • Kasprowicz L, Malloch G, Pickup J, Fenton B (2008a) Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agr Forest Entomol 10: 91–100

    Article  Google Scholar 

  • Kasprowicz L, Malloch G, Foster S, Pickup J, Zhan J, Fenton B (2008b) Clonal turnover of MACE-carrying peach-potato aphids (Myzus persicae (Sulzer), Homoptera: Aphididae) colonising Scotland. Bull Entomol Res 98: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Korona R (2004) Experimental studies of deleterious mutation in Saccharomyces cerevisiae. Res Microbiol 155: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Moran NA (1998) Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. Proc Natl Acad Sci USA 95: 4458–4462

    Article  PubMed  CAS  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453–2465

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn KS (2000) Genetic structure and dispersal of cereal aphid populations. PhD Thesis, University of Nottingham, Nottingham

    Google Scholar 

  • Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, Clark SJ, Sunnucks P (2003) Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol Ecol 12: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn KS, Loxdale HD, Harrington R, Clark SJ, Sunnucks P (2004) Evidence for gene flow and local clonal selection in field populations of the grain aphid (Sitobion avenae) in Britain revealed using microsatellites. Heredity 93: 143–153

    Article  PubMed  CAS  Google Scholar 

  • Loxdale HD (2001) Tracking flying insects using molecular markers. Antenna 25: 242–250

    Google Scholar 

  • Loxdale HD, Brookes CP (1988) Electrophoretic study of enzymes from cereal aphid populations. V. Spatial and temporal genetic similarity between holocyclic populations of the bird cherry-oat aphid Rhopalosiphum padi (L) (Hemiptera: Aphididae) in Britain. Bull Entomol Res 78: 241–249

    Article  CAS  Google Scholar 

  • Loxdale HD, Brookes CP (1990) Genetic stability within and restricted migration (gene flow) between local populations of the blackberry-grain aphid Sitobion fragariae in south-east England. J Anim Ecol 59: 495–512

    Google Scholar 

  • Loxdale HD, Brookes CP, Wynne IR, Clark SJ (1998) Genetic variability within and between English populations of the damson-hop aphid Phorodon humuli (Hemiptera: Aphididae) with special reference to esterases associated with insecticide resistance. Bull Entomol Res 88: 513–526

    Article  Google Scholar 

  • Loxdale HD, Hardie J, Halbert S, Foottit R, Kidd NAC, Carter CI (1993) The relative importance of short- and long-range movement of flying aphids. Biol Rev 68: 291–311

    Article  Google Scholar 

  • Loxdale HD, Lushai G (1998) Molecular markers in entomology (Review). Bull Entomol Res 88: 577–600

    Article  CAS  Google Scholar 

  • Loxdale HD, Lushai G (1999) Slaves of the environment: the movement of insects in relation to their ecology and genotype. Philos Trans R Soc 354: 1479–1495

    Article  Google Scholar 

  • Loxdale HD, Lushai G (2003a) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linn Soc 79: 3–16

    Article  Google Scholar 

  • Loxdale HD, Lushai G (eds) (2003b) Intraclonal genetic variation: ecological and evolutionary aspects. Proceedings of the joint Royal Entomological Society-Linnean Society Symposium. Biol J Linn Soc 79: 1–208

    Google Scholar 

  • Loxdale HD, Lushai G (2003c) Maintenance of aphid clonal lineages: images of immortality. Infect Genet Evol 3: 259–269

    Article  PubMed  Google Scholar 

  • Loxdale HD, Lushai G (2007) Population genetic issues: the unfolding story revealed using molecular markers. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, Oxford, pp. 31–67

    Chapter  Google Scholar 

  • Loxdale HD, Tarr IJ, Weber CP, Brookes CP, Digby PGN, Castañera P (1985) Electrophoretic study of enzymes from cereal aphid populations. III. Spatial and temporal genetic variation of populations of Sitobion avenae (F) (Hemiptera: Aphididae). Bull Entomol Res 75: 121–141

    Article  Google Scholar 

  • Lushai G, De Barro PJ, David O, Sherratt TN, Maclean N (1998) Genetic variation within a parthenogenetic lineage. Insect Mol Biol 7: 337–344

    Article  PubMed  CAS  Google Scholar 

  • Lushai G, Hardie J, Harrington R (1996) Inheritance of photoperiodic response in the bird cherry aphid Rhopalosiphum padi. Physiol Entomol 21: 297–303

    Article  Google Scholar 

  • Lushai G, Loxdale HD (2007) The potential role of chromosome telomere resetting consequent upon sex in the population dynamics of aphids: an hypothesis. Biol J Linn Soc 90: 719–728

    Article  Google Scholar 

  • Lushai G, Loxdale HD, Allen JA (2003) The dynamic clonal genome and its adaptive potential. Biol J Linn Soc 79: 193–208

    Article  Google Scholar 

  • Lushai G, Loxdale HD, Brookes CP, von Mende N, Harrington R, Hardie J (1997) Genotypic variation among different phenotypes within aphid clones. Proc R Soc Lond B 264: 725–730

    Article  CAS  Google Scholar 

  • Lushai G, Markovitch O, Loxdale HD (2002) Host-based genotype variation in insects revisited. B Entomol Res 92: 159–164

    Article  CAS  Google Scholar 

  • Lynch M, Blanchard JL (1998) Deleterious mutation accumulation in organelle genomes. Genetica 102–103: 29–39

    Article  PubMed  Google Scholar 

  • Lynch M, Burger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84: 339–344

    PubMed  CAS  Google Scholar 

  • Mackenzie A, Guldemond JA (1994) Sympatric speciation in aphids. II. Host race formation in the face of gene flow. In: Leather SR, Watt AD, Mill NJ, Walter KPA (eds) Individuals, populations and patterns in ecology. Intercept Ltd, Andover, Hampshire, pp. 379–393

    Google Scholar 

  • Malloch G, Highet F, Kasprowicz L, Pickup J, Neilson R, Fenton B (2006) Microsatellite marker analysis of peach-potato aphids (Myzus persicae; Homoptera: Aphididae) from Scottish suction traps. Bull Entomol Res 96: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Mark Welch DB, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Torres DA (1994) Molecular characterisation and population analysis of mitochondrial variation in the aphid Rhopalosiphum padi (L) (Homoptera: Aphididae). PhD Thesis, University of Valencia, Valencia

    Google Scholar 

  • Martínez-Torres D, Moya A, Hebert PDN, Simon J-C (1997) Geographic distribution and seasonal variation of mitochondrial DNA haplotypes in the aphid Rhopalosiphum padi (Hemiptera: Aphididae). Bull Entomol Res 87: 161–167

    Article  Google Scholar 

  • Martens K, Rossetti, G, Home DJ (2003) How ancient are ancient asexuals? Proc R Soc Lond B 270: 723–729

    Article  Google Scholar 

  • Massonnet B, Simon J-C, Weisser WW (2002) Metapopulation structure of the specialised herbivore Macrosiphoniella tanacetaria (Homoptera: Aphididae). Mol Ecol 11: 2511–2521

    Article  PubMed  Google Scholar 

  • Massonnet B, Weisser WW (2004) Patterns of genetic differentiation between populations of the specialised herbivore Macrosiphoniella tanacetaria (Homoptera: Aphididae). Heredity 93: 577–584

    Article  PubMed  CAS  Google Scholar 

  • Maynard-Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Miller NJ (2000) Population structure and gene flow in a host-alternating aphid Pemphigus bursarius. PhD Thesis, University of Birmingham, Birmingham

    Google Scholar 

  • Miller NJ, Birley AJ, Overall ADJ, Tatchell, GM (2003) Population genetic structure of the lettuce root aphid Pemphigus bursarius (L.) in relation to geographic distance, gene flow and host plant usage. Heredity 91: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Google Scholar 

  • Nicol D, Armstrong KF, Wratten SD, Cameron CM, Frampton C, Fenton B (1997) Genetic variation in an introduced aphid pest (Metopolophium dirhodum) in New Zealand and relation to individuals from Europe. Mol Ecol 6: 255–265

    Article  Google Scholar 

  • Niemeyer HM (1990) The role of secondary plant compounds in aphid-host interactions. In: Campbell RK, Eikenbary RD (eds) Aphid-plant genotype interactions. Elsevier Amsterdam, pp. 187–205

    Google Scholar 

  • Normark BB (1999) Evolution in a putatively ancient asexual aphid lineage: Recombination and rapid karyotype change. Evolution 53: 1458–1469

    Article  Google Scholar 

  • Normark BB, Judson OP, Moran NA (2003) Genomic signatures on ancient asexual lineages. Biol J Linn Soc 79: 69–84

    Article  Google Scholar 

  • Paland S, Lynch M (2006) Transitions to asexuality result in excess amino acid substitutions. Science 311: 990–992

    Article  PubMed  CAS  Google Scholar 

  • Ridley M (1993) Evolution. Blackwell, Cambridge, Massachusetts, USA

    Google Scholar 

  • Roderick G K (1996) Geographic structure of insect populations: gene flow, phylogeography and their uses. Annu Rev Entomol 41: 325–352

    Article  PubMed  CAS  Google Scholar 

  • Sabater-Muñoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier J-P, Giblot Ducray D, Hunter W, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbé Y, Simon J-C, Stern DL, Wincker P, Tagu D (2006) Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biol 7: R21

    Article  PubMed  Google Scholar 

  • Sawicki RM, Devonshire AL, Payne RW, Petzing SM (1980) Stability of insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Pestic Sci 11: 33

    Article  CAS  Google Scholar 

  • Scali V, Passamonti M, Marescalchi O, Mantovani B (2003) Linkage between sexual and asexual lineages: genome evolution in Bacillus stick insects. Biol J Linn Soc 79: 137–150

    Article  Google Scholar 

  • Schön I, Martens K, van Doninck K, Butlin RK (2003) Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Biol J Linn Soc 79: 93–100

    Article  Google Scholar 

  • Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple population models. Theor Popul Biol 64: 201–209

    Article  PubMed  Google Scholar 

  • Sheppard WS, Steck GS, McPheron BA (1992) Geographic populations of the medfly may be differentiated by mitochondrial DNA variation. Experientia 48: 1010–1013

    Article  Google Scholar 

  • Shufran KA, Mayo ZB, Crease TJ (2003) Genetic changes within an aphid clone: homogenization of rDNA intergenic spacers after insecticide selection. Biol J Lin Soc 79: 101–105

    Article  Google Scholar 

  • Simon J-C, Baumann S, Sunnucks P, Hebert PDN, Pierre JS, Le Gallic JF, Dedryver C-A (1999) Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers. Mol Ecol 8: 531–545

    Article  PubMed  CAS  Google Scholar 

  • Simon J-C, Delmotte F, Rispe C, Crease T (2003a) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Lin Soc 79: 151–163

    Article  Google Scholar 

  • Simon J-C, Carre S, Boutin M, Prunier-Leterme N, Sabater-Munoz B, Latorre A, Bournoville R (2003b) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond B 270: 1703–1712

    Article  Google Scholar 

  • Simon J-C, Martinez-Torres D, Latorre A, Moya A, Hebert PDN (1996) Molecular characterization of cyclic and obligate parthenogens of the aphid Rhopalosiphum padi (L.). Proc R Soc Lond B 263: 481–486

    Article  CAS  Google Scholar 

  • Simon J-C, Rispe C, Sunnucks P (2002) Ecology and evolution of sex in aphids. Trends Ecol Evol 17: 34–39

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16: 393–430

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279

    Article  Google Scholar 

  • Smadja C, Galindo J, Butlin R (2008) Hitching a lift on the road to speciation. Mol Ecol 17: 4177–4180

    Article  PubMed  Google Scholar 

  • Strathdee AT, Bale JS, Block WC, Webb NR, Hodkinson ID, Coulson SJ (1993) Extreme adaptive life-cycle in a high arctic aphid Acyrthosiphon svalbardicum. Ecol Entomol 18: 254–258

    Article  Google Scholar 

  • Sunnucks P, Chisholm D, Turak E, Hales DF (1998) Evolution of an ecological trait in parthenogenetic Sitobion aphids. Heredity 81: 638–647

    Article  Google Scholar 

  • Sunnucks P, De Barro PJ, Lushai G, Maclean N, Hales D (1997) Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Mol Ecol 6: 1059–1073

    Article  PubMed  CAS  Google Scholar 

  • Tagu D, Klingler JP, Moya A, Simon J-C (2008) Early progress in aphid genomics and consequences for plant-aphid interactions studies. Mol Plant Microbe Interact 21: 701–708

    Article  PubMed  CAS  Google Scholar 

  • Tatchell GM, Plumb RT, Carter N (1988) Migration of alate morphs of the bird cherry aphid (Rhopalosiphum padi) and implications for the epidemiology of barley yellow dwarf virus. Ann Appl Biol 112: 1–11

    Article  Google Scholar 

  • Taylor LR (1965) Flight behaviour and aphid migration. Proc North Central Branch Entomol Soc Am 20: 9–19

    Google Scholar 

  • Taylor LR (1986a) The distribution of virus disease and the migrant vector aphid. In: McLean GD, Garrett RG, Ruesink WG (eds) Plant virus epidemics: monitoring, modelling and predicting outbreaks. Acad Press Australia, pp. 35–57

    Google Scholar 

  • Taylor LR (1986b) Synoptic dynamics migration and the Rothamsted insect survey. J Anim Ecol 55: 1–38

    Article  Google Scholar 

  • Taylor LR, Woiwod IP, Taylor RAJ (1979) The migratory ambit of the hop aphid and its significance in aphid population dynamics. J Anim Ecol 48: 955–972

    Article  Google Scholar 

  • Thompson JN (1994) The Co-evolutionary process. University of Chicago Press, Chicago and London

    Google Scholar 

  • Van Doninck K, Schön I, De Bruyn L, Martens K (2002) A general purpose genotype in an ancient asexual. Oecologia 132: 205–212

    Article  Google Scholar 

  • van Emden HF (1988) The peach-potato aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) – more than a decade on a fully defined chemical diet. Entomol 107: 4–10

    Google Scholar 

  • van Emden HF, Harrington R (eds) (2007) Aphids as crop pests. CABI, Wallingford, Oxford

    Google Scholar 

  • Via S (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53: 1446–1457

    Article  Google Scholar 

  • Via S (2001) Sympatric speciation in animals: the ugly ducking grows up. Trends Ecol Evol 16: 381–390

    Article  PubMed  Google Scholar 

  • Via S, Bouck AC, Skillman S (2000) Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 54: 1626–1637

    PubMed  CAS  Google Scholar 

  • Via S, West J (2008) The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol Ecol 17: 4334–4345

    Article  PubMed  Google Scholar 

  • Vialatte A, Dedryver C-A, Simon J-C, Galman M, Plantegenest M (2005) Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proc R Soc Lond B 272: 1075–1082

    Article  Google Scholar 

  • Vialatte A, Plantegenest M, Simon J-C, Dedryver C-A (2007) Farm-scale assessment of movement patterns and colonization dynamics of the grain aphid in arable crops and hedgerows. Agric For Entomol 9: 337–346

    Article  Google Scholar 

  • Vorburger C (2006) Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae. J Evol Biol 19: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Vorburger C, Lancaster M, Sunnucks P (2003a) Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two ‘superclones’ in Victoria, Australia. Mol Ecol 12: 3493–3504

    Article  PubMed  CAS  Google Scholar 

  • Vorburger C, Sunnucks P, Ward SA (2003b) Explaining the coexistence of asexuals with their sexual progenitors: no evidence for general-purpose genotypes in obligate parthenogens of the peach-potato aphid Myzus persicae. Ecol Lett 6: 1091–1098

    Article  Google Scholar 

  • Vorwerk S, Forneck A (2007) Analysis of genetic variation within clonal lineages of grape phylloxera (Daktulosphaira vitifoliae Fitch) using AFLP fingerprinting and DNA sequencing. Genome 50: 660–667

    Article  PubMed  CAS  Google Scholar 

  • Ward SA, Leather SR, Pickup J, Harrington R (1998) Mortality during dispersal and the cost of host specificity in parasites: how many aphids find hosts? J Anim Ecol 67: 763–773

    Article  Google Scholar 

  • West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12: 1003–1012

    Article  Google Scholar 

  • Wilson ACC, Sunnucks P, Blackman RL, Hales DF (2002) Microsatellite variation in cyclically parthenogenetic populations of Myzus persicae in south-eastern Australia. Heredity 88: 258–266

    Article  PubMed  CAS  Google Scholar 

  • Wilson ACC, Sunnucks P, Hales D F (1999) Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand. Mol Ecol 8: 1655–1666

    Article  PubMed  Google Scholar 

  • Woiwod IP, Tatchell GM, Dupuch MJ, Macaulay EDM, Parker SJ, Riley AM, Taylor MS (1988) Rothamsted Insect Survey: nineteenth annual summary: suction traps 1987. Annu Rep Rothamsted Experimental Station 1987 Part 2, pp. 195–229

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28: 114–138

    PubMed  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354

    Google Scholar 

  • Wynne IR, Howard JJ, Loxdale HD, Brookes CP (1994) Population genetic structure during aestivation in the sycamore aphid Drepanosiphum platanoidis (Hemiptera: Drepanosiphidae). Eur J Entomol 91: 375–383Footnote

    Since writing this article, Ihave found a reference to the occurrence of rare Trama males and oviparae, at least in T. troglodytes, which may possibly be sexually functional according to the authors. see: Blackman RL, De Boise E, Czylok A (2001) Occurrence of sexual morphs in Trama troglodytes von Heyden, 1837 (Hemiptera, Aphididae).Journal of Natural History, 35: 779–785

    Google Scholar 

Download references

Acknowledgments

I thank Professor Wolfgang W. Weisser, to whom this article is dedicated, and Drs. Brian Fenton, Steve P. Foster, Nicola von Mende-Loxdale and Isa Schön for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh D. Loxdale .

Editor information

Editors and Affiliations

Glossary

Androcyclic:

asexual aphid lineage that produces mostly males and some asexual females.

Anholocyclic:

permanently viviparous asexual aphid lineage reproducing by apomictic parthenogenesis. This term can include an obligate asexual lineage or species, or a “facultative” holocyclic lineage of a species in which temperature and light conditions are favourable to maintain all year round parthenogenetic propagation (i.e., 16 h L: 8 h D and > 15°C ambient temperature), rather than induce the production of the pre-sexual and sexual forms (i.e., 8 h L: 16 h D and ambient temperature < 15°C).

Cline:

here used in the sense of a gradual change in allele or genotypic frequencies at a given locus/loci, across the distributional range of a species population, and correlated with an environmental/ geographic transition.

Gynoparae:

winged pre-sexual aphid female morph produced under shortening day, cooler ambient temperature conditions from a holocyclic asexual lineage, along with males. It migrates to a new host where it produces sexual females (oviparae) which in turn mate with the males to produce cold hardy overwintering egg. The new host could be a primary woody one in the case of host alternating aphid species:

Holocyclic:

an aphid lineage and/or species with an annual sexual phase, usually involving an autumnal winged migration. In the case of species that have an alternation of plant hosts, this is from a secondary herbaceous host to the primary woody host and vice versa, but there are exceptions (e.g., Sitobion avenae which remains on Poaceae all year round). Such holocyclic forms can also be “facultative” anholocyclic.

Ovipara:

egg laying sexual aphid female. This morph attracts the males (winged in most species, but there are exceptions) using sex pheromones.

Telescoping of generations:

the phenomenon whereby asexual aphid females have both their offspring (children) and their offspring (grandchildren) within them.

Virginoparae:

asexual viviparous female aphids which produce further such asexual females.

Wheat volunteers:

cultivated wheat sprouting from the seeds of plants sown in previous sowings.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Loxdale, H.D. (2009). What’s in a Clone: The Rapid Evolution of Aphid Asexual Lineages in Relation to Geography, Host Plant Adaptation and Resistance to Pesticides. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_25

Download citation

Publish with us

Policies and ethics