Skip to main content

Asexual Reproduction in Infectious Diseases

  • Chapter
  • First Online:
Book cover Lost Sex

Abstract

Parasitic organisms in the strict sense (eukaryotes) represent a significant part of the general biodiversity which has been described and, with 179 species affecting people worldwide, are of relevance for mankind in particular. Contrary to the classical view, many of these species are clonal. For example, 72% of human parasites use this means of reproduction. Such parasites represent a major threat to human health. A cumulative inventory leads to an impressive total of 1339 million people being affected by clonal parasites worldwide. These clonal parasites can be classified into different groups depending on how and where asexuality takes place in the life cycle. The demography and population genetics of these groups differ, which is relevant for their treatment. Recent empirical studies have found that the sampling strategy used can dramatically influence how results are interpreted. Furthermore, the role of individual hosts and their gender has been identified as being important for some parasites and that these parasites harbour an unexpected amount of genetic diversity on a very local scale. These issues are discussed in terms of how they may influence the design of therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson TJC, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP (2000) Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17: 1467–1482

    PubMed  CAS  Google Scholar 

  • Arnavielhe S, de Meeûs T, Blancart A, Mallié M, Renaud F, Bastide JM (2000) Multicentric study of Candida albicans isolates from non-neutropenic patients: population structure and mode of reproduction. Mycoses 43: 109–117

    Article  PubMed  CAS  Google Scholar 

  • Bakke TA, Harris PD, Cable J (2002) Host specificity dynamics: observations on gyrodactylid monogeneans. Int J Parasitol 32: 281–308

    Article  PubMed  Google Scholar 

  • Balloux F, Lehmann L, De Meeûs T (2003) The population genetics of clonal or partially clonal diploids. Genetics 164: 1635–1644

    PubMed  Google Scholar 

  • Bartley D, Bagley M, Gall G, Bentley B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv Biol 6: 365–375

    Article  Google Scholar 

  • Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nature Rev Genet 3: 918–928

    Article  PubMed  CAS  Google Scholar 

  • Boerlin P, Boerlin-Petzold F, Goudet J, Durussel C, Pagani JL, Chave JP, Bille J (1996) Typing Candida albicans oral isolates from human immunodeficiency virus-infected patients by multilocus enzyme electrophoresis and DNA fingerprinting. J Clinical Microbiol 34: 1235–1248

    CAS  Google Scholar 

  • Bougnoux ME, Aanensen DM, Morand S, Théraud M, Spratt BG, d'Enfert C (2004) Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infect Genet Evol 4: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Bush AO, Fernández JC, Esch GW, Seed JR (2001) Parasitism: the diversity and ecology of animal parasites. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Caillaud D, Prugnolle F, Durand P, Théron A, De Meeûs T (2006) Host sex and parasite genetic diversity. Microbes Infect 8: 2477–2483

    Article  PubMed  CAS  Google Scholar 

  • Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Correira A, Sampaio P, Almeida J, Pais C (2004) Study of molecular epidemiology of candidiasis in Portugal by PCR fingerprinting of Candida clinical isolates. J Clin Microbiol 42: 5899–5903

    Article  CAS  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14: 2247–2257

    Article  PubMed  CAS  Google Scholar 

  • Delmotte F, Leterme N, Gauthier JP, Rispe C, Simon JC (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol 11: 711–723

    Article  PubMed  CAS  Google Scholar 

  • De Meeûs T, Balloux F (2004) Clonal reproduction and linkage disequilibrium in diploids: a simulation study. Infect Genet Evol 4: 345–351

    Article  PubMed  Google Scholar 

  • De Meeûs T, Balloux F (2005) F-statistics of clonal diploids structured in numerous demes. Mol Ecol 14: 2695–2702

    Article  PubMed  Google Scholar 

  • De Meeûs T, Lehmann L, Balloux F (2006) Molecular epidemiology of clonal diploids: a quick overview and a short DIY (Do It Yourself) notice. Infect Genet Evol 6: 163–170

    Article  PubMed  CAS  Google Scholar 

  • De Meeûs T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Boussès S, Renaud F (2007) Population genetics and molecular epidemiology or how to "débusquer la bête". Infect Genet Evol 7: 308–332

    Article  PubMed  CAS  Google Scholar 

  • De Meeûs T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18: 247–251

    Article  PubMed  Google Scholar 

  • Fundyga RE, Lott TJ, Arnold J (2002). Population structure of Candida albicans, a member of the human flora, as determined by microsatellite loci. Infect Genet Evol 2: 57–68

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Haque A, Lattif AA, Narayan RP, Mukhopadhyay G, Prasad R (2004) Epidemiology and molecular typing of Candida isolates from burn patients. Mycopathologia 158: 397–405

    Article  PubMed  Google Scholar 

  • Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20: 194–201

    Article  PubMed  Google Scholar 

  • Hull CM, Raisner RM, Johnson AD (2000) Evidence for mating of the "Asexual" yeast Candida albicans in a mammalian host. Science 289: 307–310

    Article  PubMed  CAS  Google Scholar 

  • Koella JC., Sørensen FL, Anderson RA (1998) The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B 265: 763–768

    Article  CAS  Google Scholar 

  • Leclerc MC, Durand P, De Meeûs T, Robert V, Renaud F (2002) Genetic diversity and population structure of Plasmodium falciparum from Senegalense samples investigated by nineteen microsatellites and four genes coding for antigenic determinants. Microbes Infect 4: 685–692

    Article  PubMed  CAS  Google Scholar 

  • MacLeod A, Tweedie A, Welburn SC, Maudlin I, Turner CMR, Tait A. (2000) Minisatellite marker analysis of Trypanosoma brucei: Reconciliation of clonal, panmictic, and epidemic population genetic structures. Proc Natl Acad Sci USA 97: 13442–13447

    Article  PubMed  CAS  Google Scholar 

  • Maraun M, Heethoff M, Schneider K, Scheu S, Weigmann G, Cianciolo J, Thomas RH, Norton RA (2004) Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp Appl Acarol 33: 183–201

    Article  PubMed  CAS  Google Scholar 

  • Mark-Welsh D, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215

    Article  Google Scholar 

  • Maynard-Smith J, Smith NH, Orourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90: 4384–4388

    Article  Google Scholar 

  • Milgroom MG (1996) Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol 34: 457–477

    Article  PubMed  CAS  Google Scholar 

  • Nébavi F, Ayala FJ, Renaud F, Bertout S, Eholié S, Koné M, Mallié M, de Meeûs T (2006) Clonal population structure and genetic diversity of Candida albicans in AIDS patients from Abidjan (Côte d'Ivoire). Proc Natl Acad Sci USA 103: 3663–3668

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Morand S (2000) The diversity of parasites. Quart Rev Biol 75: 277–293

    Article  PubMed  CAS  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Prugnolle F, Choisy M, Théron A, Durand P, De Meeûs T (2004) Sex-specific correlation between heterozygosity and clone size in the trematode Schistosoma mansoni. Mol Ecol 13: 2859–2864

    Article  PubMed  CAS  Google Scholar 

  • Prugnolle F, De Meeûs T, Durand P, Sire C, Théron A (2002) Sex specific genetic structure in Schistosoma mansoni: evolutionary and epidemiological implications. Mol Ecol 11: 1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Prugnolle F, Liu H, De Meeûs T, Balloux F (2005a) Population genetics of complex life cycle parasites: the case of monoecious trematodes. Int J Parasitol 35: 255–263

    Article  PubMed  Google Scholar 

  • Prugnolle F, Théron A, Pointier JP, Jabbour-Zahad R, Jarne P, Durand P, De Meeûs T. (2005b) Dispersal in a parasitic worm and its two hosts and its consequence for local adaptation. Evolution 59: 296–303

    PubMed  Google Scholar 

  • Prugnolle F, Roze D, Théron A, De Meeûs T (2005c) F-statistics under alternation of sexual and asexual reproduction: a model and data from schistosomes. Mol Ecol 14: 1355–1365

    Article  PubMed  Google Scholar 

  • Razakandrainibe FG, Durand P, Koella JC, De Meeûs T. Rousset F, Ayala FJ, Renaud F (2005) “Clonal” population structure of the malaria agent Plasmodium falciparum in high-infection regions. Proc Natl Acad Sci USA 102: 17388–17393

    Article  PubMed  CAS  Google Scholar 

  • Rego AA, Gibson DI (1989) Hyperparasitism by helminths: new records of cestodes and nematodes in proteocephalid cestodes from South American siluriform fishes. Mem Instit Oswaldo Cruz, Rio de Janeiro 84: 371–376

    CAS  Google Scholar 

  • Samish M, Rehacek J (1999) Pathogens and predators of ticks and their potential in biological control. Annu Rev Entomol 44: 159–182

    Article  PubMed  CAS  Google Scholar 

  • Sassuchin DN (1934) Hyperparasitism in protozoa. Quart Rev Biol 9: 215–224

    Article  Google Scholar 

  • Schön I, Martens K (2003) No slave to sex. Proc R Soc Lond Ser B 270: 827–833

    Google Scholar 

  • Shaw P, Ryland JS, Beardmore JA (1994) Population genetic parameters within a sea anemone family (Sagartiidae) encompassing clonal, semiclonal and aclonal modes of reproduction. In: Beaumont, A (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp. 351–358

    Google Scholar 

  • Sullivan DJ, Völkl W (1999) Hyperparasitism: multitrophic ecology and behaviour. Annu Rev Entomol 44: 291–315

    Article  PubMed  CAS  Google Scholar 

  • Sunnuck P, De Barro PJ, Lushai G., MacLean N, Hales D (1997) Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and specialization. Mol Ecol 6: 1059–1073

    Article  Google Scholar 

  • Taylor JW, Geiser DM, Burt A, Koufopanou V (1999) The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev 12: 126–146

    PubMed  CAS  Google Scholar 

  • Tibayrenc M, Ayala FJ (2002) The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol 18: 405–410

    Article  PubMed  CAS  Google Scholar 

  • Timm RM, Clauson BL (1988) Coevolution: Mammalia. In: 1988 McGraw-Hill yearbook of science & technology. McGraw-Hill Book Company, New York, pp. 212–214

    Google Scholar 

  • Verduyn Lunel F, Meis JFGM,Voss A (1999) Nosocomial fungal infections: Candidemia. Diagn Microbiol Infect Dis 34: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Vitalis R, Couvet D (2001a) ESTIM 1.0: a computer program to infer population parameters from one- and two-locus gene identity probabilities. Mol Ecol Notes 1:354–356

    Article  Google Scholar 

  • Vitalis R, Couvet D (2001b) Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157:911–925

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are financed by the CNRS and IRD. We thank Anne-Laure Bañuls for very useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry De Meeûs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Meeûs, T., Prugnolle, F., Agnew, P. (2009). Asexual Reproduction in Infectious Diseases. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_24

Download citation

Publish with us

Policies and ethics