Skip to main content

Sex Loss in Monogonont Rotifers

  • Chapter
  • First Online:
Lost Sex

Abstract

Monogonont rotifers are small, aquatic invertebrates capable of asexual and sexual reproduction. Sexual reproduction is required to produce diapausing eggs, which are able to survive adverse periods that typically occur every year. Their cyclically parthenogenetic life-cycle is believed to retain the advantages of recombination while minimizing the cost of sex. However, this life cycle is also thought to be unstable due to periodic loss of sexual reproduction by directional selection. Explaining the evolutionary dynamics of the monogonont rotifer life cycle is important for understanding how cyclical parthenogenesis is maintained, and for comparing monogononts with their close relatives, the bdelloid rotifers, which are ancient obligate asexuals. Our analysis clarifies that the cost of sex in monogononts is two-fold when compared to an obligate asexual lineage on an annual time-scale. However, when compared to an obligate sexual, cyclical parthenogens avoid the cost of sex in every parthenogenetic generation. In monogonont rotifers, where sexual reproduction is triggered by crowding, reproducible loss of sex has been reported in laboratory experiments. The mechanistic hypothesis is that some obligate asexual clones arise by spontaneous mutation, and they fail to respond to the sex triggering chemical signals produced by conspecifics. Hence, in these clones, asexual females never produce sexual daughters. Using a simple model, we show that as a result of this association of sex with dormancy, sex loss results in a huge short-term advantage, because sexual females only produce males or diapausing eggs, and do not contribute to current population growth. However, the requirement of sex for dormancy should result in a mid-term selection pressure to retain sex. It is this mid-term pressure that stabilizes cyclical parthenogenesis and allows it to persist. From this analysis, the periodic occurrence of obligate asexuals is predicted in monogonont rotifer populations, especially those with infrequent adverse periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aparici E, Carmona MJ, Serra M (1998) Sex allocation in haplodiploid cyclical parthenogens with density-dependent proportion of males. Am Nat 152: 652–657

    Article  PubMed  CAS  Google Scholar 

  • Aparici E, Carmona MJ, Serra M (2002) Evidence for an even sex allocation in haplodiploid cyclical parthenogens. J Evol Biol 15:65–73

    Article  Google Scholar 

  • Armengol X, Boronat L, Camacho A, Wurtsbaugh W (2001) Grazing by a dominant rotifer Conochilus unicornis Rousselet in a mountain lake: In situ measurements with synthetic microspheres. Hydrobiologia 446/447: 107–114

    Article  Google Scholar 

  • Bennet WN, Boraas ME (1989) A demographic profile of the fastest growing metazoan – a strain of Brachionus calyciflorus (Rotifera). Oikos 55: 365–369

    Article  Google Scholar 

  • Boraas ME (1983) Population dynamics of food-limited rotifers in two-stage chemostat culture. Limnol Oceanogr 28: 546–563

    Google Scholar 

  • Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39: 1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Caprioli M, Ricci C (2001) Recipies for successful aanhydrobiosis in bdelloid rotifers. Hydrobiologia 446/447: 13–17

    Article  Google Scholar 

  • Colbourne JK, Hebert PDN (1996) The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Philos Trans R Soc Lond 351: 349–360

    Article  CAS  Google Scholar 

  • Crease TJ, Stanton DJ, Hebert PDN (1989) Polyphyletic origins of asexuality in Daphnia pulex II. Mitochondrial-DNA variation. Evolution 43: 1016–1026

    Article  Google Scholar 

  • Fussmann GF, Ellner SP, Hairston NG Jr (2003) Evolution as a critical component of plankton dynamics. Proc R Soc Lond B 270: 1015–1022

    Article  Google Scholar 

  • Garcia-Roger EM, Carmona MJ, Serra M (2006) Patterns in rotifer diapausing egg banks: density and viability. J Exp Mar Biol Ecol 336: 198–210

    Article  Google Scholar 

  • Gilbert JJ (1963) Mictic female production in the rotifer Brachionus calyciflorus. J Exp Zool 153: 113–124

    Article  Google Scholar 

  • Gilbert JJ (1995) Structure, development and induction of a new diapause stage in rotifers. Freshw Biol 34: 263–270

    Article  Google Scholar 

  • Gilbert JJ (2002) Endogenous regulation of environmentally induced sexuality in a rotifer: a multigenerational parental effect induced by fertilisation. Freshw Biol 47: 1633–1641

    Article  Google Scholar 

  • Gilbert JJ (2003) Specificity of crowding response that induces sexuality in the rotifer Brachionus. Limnol Oceanogr 48: 1297–1303

    Google Scholar 

  • Gómez A, Carvalho GR (2000) Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Mol Ecol 9: 203–214

    Article  PubMed  Google Scholar 

  • Gómez A, Serra M, Carvalho GR, Lundt DH (2002) Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1445

    PubMed  Google Scholar 

  • Hebert PDN (1987) Genotypic characteristics of cyclic parthenogens and their obligately asexual derivatives. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhauser Verlag, Basel and Boston, pp. 175–195

    Google Scholar 

  • Innes DJ, Hebert PDN (1988) The origin and genetic basis of obligate parthenogenesis in Daphnia pulex. Evolution 42: 1024–1035

    Article  Google Scholar 

  • King CE (1980) The genetic structure of zooplankton populations. In: Kerfoot WC (ed). Evolution and ecology of zooplankton communities. University Press of New England, Hanover, pp. 315–329

    Google Scholar 

  • King CE, Snell TW (1977) Genetic basis of amphoteric reproduction in rotifers. Heredity 39: 361–364

    Article  Google Scholar 

  • Kotani T, Ozaki M, Matsuoka K, Snell TW, Hagiwara A (2001) Reproductive isolation among geographically and temporally isolated marine Brachionus strains. Hydrobiologia 446/447: 283–290

    Article  Google Scholar 

  • Kubanek J, Snell TW (2008) Quorum sensing in rotifers. In: Winans SC, Bassler BL (eds). Chemical communication among bacteria. ASM Press, Washington DC, pp. 453–461

    Google Scholar 

  • Lynch M, Deng HW (1994) Genetic slippage in response to sex. Am Nat 144: 242–261

    Article  Google Scholar 

  • Marcus NH, Lutz R, Burnett W, Cable P (1994) Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol Oceanogr 39: 154–158

    Google Scholar 

  • Mark Welch DB, Cummings MP, Hillis DM, Meselson M (2004a) When do gene copies in the asexual class Bdelloidea diverge? Proc Natl Acad Sci USA 101: 1622–1625

    Article  PubMed  CAS  Google Scholar 

  • Mark Welch DB, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Mark Welch DB, Meselson M (2001) Rates of nucleotide substitution in sexual and ancient asexual rotifers. Proc Natl Acad Sci USA 98: 6720–6724

    Article  PubMed  CAS  Google Scholar 

  • Mark Welch, JL, Mark Welch DB, Meselson M (2004b) Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proc Natl Acad Sci USA 101: 1618–1621

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Maynard Smith J (1986) Contemplating life without sex. Nature 324: 300–301

    Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol 27: 321–348

    Article  Google Scholar 

  • Normark BB, Judson OP, Moran NA (2003) Genomic signatures of ancient asexual lineages. Biol J Linnean Soc 79: 69–84

    Article  Google Scholar 

  • Ortells R, Gomez A, Serra M (2006) Effects of duration of the planktonic phase on rotifer genetic diversity. Arch Hydrobiol 167: 203–216

    Article  Google Scholar 

  • Peck J, Waxman D (2000) What’s wrong with a little sex? J Evol Biol 13: 63–69

    Article  Google Scholar 

  • Pourriot R, Clément P (1981) Action de facteurs externes sur la reproduction et le cycle reproducteur des Rotifers. Acta Oecologica Generale 2: 135–151

    Google Scholar 

  • Ricci C, Melone G (1998) Dwarf males in monogonont rotifers. Aquatic Ecol 32: 361–365

    Article  Google Scholar 

  • Schröder T, Howard S, Arroyo ML, Walsh EJ (2007) Sexual reproduction and diapause of Hexarthra sp (Rotifera) in short-lived ponds in the Chihuahuan Desert. Freshw Biol 52: 1033–1042

    Article  Google Scholar 

  • Serra M, Carmona MJ (1993) Mixis strategies and resting egg production of rotifers living in temporally-varying habitats. Hydrobiologia 255–256: 117–126

    Article  Google Scholar 

  • Serra M, King CE (1999) Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. J Evol Biol 12: 263–271.

    Article  Google Scholar 

  • Serra M, Snell TW, King CE (2003) The timing of sex in cyclically parthenogenetic rotifers. In: Moya A, Font E (eds) Evolution: from molecules to ecosystems. Oxford University Press, New York, pp. 135–146.

    Google Scholar 

  • Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79: 151–163

    Article  Google Scholar 

  • Simon JC, Rispe C, Sunnucks P (2002) Ecology and evolution of sex in aphids. Trends Ecol Evol 17: 34–39

    Article  Google Scholar 

  • Snell TW (1987) Sex, population dynamics and resting egg production in rotifers. Hydrobiologia 144: 105–111

    Article  Google Scholar 

  • Snell TW (1989) Systematics, reproductive isolation and species boundaries in monogonont rotifers. Hydrobiologia 186/187: 299–310

    Article  Google Scholar 

  • Snell TW, Boyer EM (1988) Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). J Exp Mar Biol Ecol 124: 73–85

    Article  Google Scholar 

  • Snell TW, Kubanek J, Carter J, Payne AB, Kim J, Hicks MK, Stelzer CP (2006) A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 149: 763–773

    Article  CAS  Google Scholar 

  • Snell TW, Serra M, Carmona MJ (1998) Toxicity and sexual reproduction in rotifers: reduced resting egg production and heterozygosity loss. In: Forbes VE (ed) Genetics and Ecotoxicology. Taylor and Francis, London, pp. 169–185

    Google Scholar 

  • Stelzer CP (2008) Obligate asexuality in a rotifer and the role of sexual signals. J Evol Biol 21: 287–293

    PubMed  Google Scholar 

  • Stelzer CP, Snell TW (2003) Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by low density-dependent chemical cue. Limnol Oceanogr 48: 939–943

    Article  Google Scholar 

  • Stelzer CP, Snell TW (2006) Specificity of the crowding response in the Brachionus plicatilis species complex. Limnol Oceanogr 51: 125–130

    Article  Google Scholar 

  • Suatoni E, Vicario S, Rice S, Snell TW, Caccone A (2006) An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer Brachionus plicatilis. Mol Phyl Evol 41: 86–98

    Article  CAS  Google Scholar 

  • Tagg N, Doncaster CP, Innes DJ (2005) Outcomes of reciprocal invasions between genetically diverse and genetically uniform populations of Daphnia obtusa (Kurz). Oecologia 143: 527–536

    Article  PubMed  CAS  Google Scholar 

  • Wallace RL, Snell TW, Ricci C, Nogrady T (2006) Rotifera 1: Biology, Ecology and Systematics. Backhuys Publishers, Leiden

    Google Scholar 

  • Williams GC (1975) Sex and Evolution. Princeton University Press, Princeton

    Google Scholar 

  • Yoshida T, Jones LE, Ellner S, Fussmann GF, Hairston NG Jr (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424: 303–306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Maria José Carmona for valuable comments that improved this paper. Two anonymous reviewers made useful comments that we incorporated into this chapter. This work was supported by the National Science Foundation grants BE/GenEn MCB-0412674 to TWS and by the Spanish Ministry of Education and Science grants CLG2006-27069-E/BOS and BOS2003-0075 to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Serra, M., Snell, T.W. (2009). Sex Loss in Monogonont Rotifers. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_14

Download citation

Publish with us

Policies and ethics