Skip to main content
Book cover

Lost Sex pp 241–257Cite as

Parthenogenesis in Oribatid Mites (Acari, Oribatida): Evolution Without Sex

  • Chapter
  • First Online:

Abstract

Oribatid mites (Acari, Oribatida) are an extraordinarily old and speciose group of chelicerate arthropods that probably originated in Silurian times. A high number (∼10%) of oribatid mite species reproduces via parthenogenesis, presumably by terminal fusion automixis with holokinetic chromosomes and an inverted sequence of meiotic divisions. Several of the old taxa of oribatid mites likely have radiated while being parthenogenetic. Many species of those parthenogenetic clusters are morphologically distinct – this distinctness contrasts with high genetic variance, as has been confirmed by molecular studies, e.g. for Platynothrus peltifer and species of the genus Tectocepheus. Platynothrus peltifer comprises at least seven distinct molecular lineages which are geographically separated and may be recognized as cryptic species. Stable isotope ratios (15N/14N and 13C/12C) of oribatid mite species indicate that they occupy distinct trophic niches; however, the exact nature of these niches is unknown. One of the few microhabitats colonized by specific oribatid mite species is the bark of trees. The tree-inhabiting genus Crotonia re-evolved sexual reproduction from parthenogenetic ancestors, potentially while colonizing trees. Understanding the high degree of parthenogenetic reproduction in soil living oribatid mites allows the dissection of the functional role and evolution of sexual reproduction, and the factors responsible for the long-term survival and radiation of parthenogenetic species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberti G, Coons LB (1999) Acari: Mites. In: Harrison FW, Foelix RF (eds) Microscopic Anatomy of Invertebrates. Wiley-Liss Inc., New York, pp. 515–1215

    Google Scholar 

  • Anderson JM (1975) The enigma of soil animal species diversity. Proc. 5th Int Coll Soil Zool, Prague, 1973, pp. 51–58

    Google Scholar 

  • Badejo MA, Espindola JAA, Guerra JGM, De Aquino AM, Correa MEA (2002) Soil oribatid mite communities under three species of legumes in an ultisol in Brazil. Exp Appl Acarol 27: 283–296

    Article  PubMed  Google Scholar 

  • Barraclough TG, Birky CW Jr, Burt A (2003) Diversification in sexual and asexual organisms. Evolution 57: 2166–2172

    PubMed  Google Scholar 

  • Bell G (1982) The Masterpiece of Nature. The Evolution and Genetics of Sexuality. University of California Press, Berkeley, CA

    Google Scholar 

  • Behan VM, Hill SB (1978) Feeding-habits and spore dispersal of oribatid mites in the North-American arctic. Rev Ecol Biol Sol 15: 497–516

    Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosys Environ 74: 411–423

    Article  Google Scholar 

  • Bergmann M, Laumann M, Cloetens P, Heethoff M (2008) Morphology of the internal reproductive organs of Archegozetes longisetosus Aoki (Acari, Oribatida). Soil Org 80: 171–195

    Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40: 1–25

    Article  PubMed  Google Scholar 

  • Collin R, Miglietta MP (2008) Reversing opinions on Dollo’s law. Trends Ecol Evol 23: 602–609

    Article  PubMed  Google Scholar 

  • Cordaux R, Michel-Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14: 237–243

    Article  CAS  Google Scholar 

  • Crow JF (1994) Advantages of sexual reproduction. Dev Gen 15: 205–213

    Article  CAS  Google Scholar 

  • Domes K, Norton RA, Maraun M, Scheu S (2007) Reevolution of sexuality breaks Dollo’s law. Proc Natl Acad Sci USA 104: 7139–7144

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer N, Partsch S, Parkinson D, Scheu S (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39: 1099–1110

    Article  CAS  Google Scholar 

  • Erdmann G, Floren A, Linsenmair KE, Scheu S, Maraun M (2006) Effect of forest age on oribatid mites from the bark of trees. Pedobiologia 50: 433–441

    Article  Google Scholar 

  • Erdmann G, Otte V, Langel R, Scheu S, Maraun M (2007) The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N; 13C) indicates strong niche differentiation. Exp Appl Acarol 41: 1–10

    Article  PubMed  Google Scholar 

  • Evans GO (1992) Principles of Acarology. CAB International, Wallingford

    Google Scholar 

  • Ewert MA, Jackson DR, Nelson CE (1994) Patterns of the temperature-dependant sex determination in turtles. J Exp Zool 270: 3–15

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of sexual selection. Clarendon Press

    Google Scholar 

  • Ghiselin MT (1974) The Economy of Nature and the Evolution of Sex. University of California Press, Berkeley, CA

    Google Scholar 

  • Goldberg EE, Igic B (2008) On phylogenetic tests of irreversible evolution. Evolution 62: 2727–2741

    Article  PubMed  Google Scholar 

  • Grandjean F (1953) Essai de classification des Oribates (Acariens). Bull Soc Zool France 78: 421–446

    Google Scholar 

  • Grandjean F (1956) Caracteres chitineux de l’ovipositeur, en structure normale chez les Oribates (Acariens). Arch Zool Exp Gen Paris 93: 96–106

    Google Scholar 

  • Grandjean F (1965) Complément a mon travail de 1953 sur la classification des oribates. Acarologia 7: 713–734

    Google Scholar 

  • Grandjean F (1969) Considérations sur le classement des oribates: leur division en 6 groupes majeurs. Acarologia 11: 127–153

    Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasites. Oikos 35: 282–290

    Article  Google Scholar 

  • Hammer M, Wallwork JA (1979) A review of the world distribution of oribatid mites (Acari: Cryptostigmata) in relation to continental drift. Biol Skr Dan Vid Selsk 22: 1–31

    Google Scholar 

  • Hansen RA (1999) Red oak litter promotes a microarthropod functional group that accelerates its decomposition. Plant Soil 209: 37–45

    Article  CAS  Google Scholar 

  • Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81: 1120–1132

    Google Scholar 

  • Harding DJL, Stuttard RA (1974) Microarthropods. In: Dickinson CH, Pugh GJF (eds) Biology of Plant Litter Decomposition. Acad Press, London, pp. 489–532

    Google Scholar 

  • Haumann G (1991) Zur Phylogenie primitiver Oribatiden (Acari: Oribatida). Verlag Technische Univ, Graz

    Google Scholar 

  • Heethoff M, Bergmann P, Norton RA (2006) Karyology and sex determination of oribatid mites. Acarologia 46: 127–131

    Google Scholar 

  • Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S (2007a) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 20: 392–402

    Article  PubMed  CAS  Google Scholar 

  • Heethoff M, Laumann M, Bergmann P (2007b) Adding to the reproductive biology of the parthenogenetic oribatid mite Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turk J Zool 31: 151–159

    Google Scholar 

  • Heethoff M, Norton RA (2009) Role of musculature during defecation in a particle-feeding arachnid, Archegozetes longisetosus (Acari, Oribatida). J Morphol 270: 1–13

    Article  PubMed  Google Scholar 

  • Judson PO, Normark BB (1996) Ancient asexual scandals. Trends Ecol Evol 11: 41–46

    Article  Google Scholar 

  • Kondrashov AS (1993) Classification of hypotheses on the advantage of amphimixis. J Hered 84: 372–387

    PubMed  CAS  Google Scholar 

  • Labandeira CC, Phillips TL, Norton RA (1997) Oribatid mites and the decomposition of plant tissues in Palaeozoic coal-swamp forests. Palaios 12: 319–353

    Article  Google Scholar 

  • Laumann M, Norton RA, Weigmann G, Scheu S, Maraun M, Heethoff M (2007) Speciation in the parthenogenetic oribatid mite genus Tectocepheus (Acari, Oribatida) as indicated by molecular phylogeny. Pedobiologia 51: 111–122

    Article  CAS  Google Scholar 

  • Laumann M, Bergmann P, Heethoff M (2008) Some remarks on the cytogenetics of oribatid mites. Soil Org 80: 223–232

    Google Scholar 

  • Lindo Z, Visser S (2004) Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clearcut harvesting in the mixed wooded boreal forest. Can J Forest Res 34: 998–1006

    Article  Google Scholar 

  • Lindo Z, Winchester NN (2006) A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western redcedar trees. Pedobiologia 50: 31–41

    Google Scholar 

  • Lindquist EE (1984) Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In: Griffith DA, Bowman CE (eds) Acarology VI. Ellis Horwood Publ, Chichester, pp. 28–62

    Google Scholar 

  • Lions JC, Gourbiere F (1988) Adult and immature populations of Adoristes ovatus (Acari, Oribatida) in the litter needles of Abies alba. Rev Ecol Biol Sol 25: 343–352

    Google Scholar 

  • Lushai G, Loxdale HD, Allen JA (2003) The dynamic clonal genome and its adaptive potential. Biol J Linn Soc 79: 193–208

    Article  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general purpose genotypes and geographic parthenogenesis. Quart Rev Biol 59: 257–290

    Article  Google Scholar 

  • Maraun M, Migge S, Schaefer M, Scheu S (1998a) Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42: 232–240

    Google Scholar 

  • Maraun M, Visser S, Scheu S (1998b) Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Appl Soil Ecol 9: 179–186

    Article  Google Scholar 

  • Maraun M, Alphei J, Bonkowski M, Buryn R, Migge S, Peter M, Schaefer M, Scheu S (1999) Middens of the earthworm Lumbricus terrestris (Lumbricidae): microhabitats for micro- and mesofauna in forest soil. Pedobiologia 43: 276–287

    Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23: 374–383

    Article  Google Scholar 

  • Maraun M, Alphei J, Beste P, Bonkowski M, Buryn R, Peter M, Migge S, Schaefer M, Scheu S (2001) Indirect effects of carbon and nutrient amendments on the soil meso- and microfauna of a beechwood. Biol Fertil Soil 34: 222–229

    CAS  Google Scholar 

  • Maraun M, Martens H, Migge M, Theenhaus A, Scheu S (2003a) Adding to the ‘enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39: 85–95

    Article  Google Scholar 

  • Maraun M., Heethoff M, Scheu S, Norton RA, Weigmann G, Thomas RH (2003b) Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Exp Appl Acarol 29: 265–277

    Article  PubMed  Google Scholar 

  • Maraun M, Heethoff M, Schneider K, Scheu S, Weigmann G, Cianciolo J, Thomas RH, Norton RA (2004) Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp Appl Acarol 33: 183–201

    Article  PubMed  CAS  Google Scholar 

  • Maraun M, Illig J, Sandmann D, Krashevska V, Norton RA, Scheu S (2008) Soil Fauna. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, Springer, Berlin, pp. 181–192.

    Chapter  Google Scholar 

  • Mark Welch D, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1978) The Evolution of Sex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Michael AD (1884) British Oribatidae, Vol. 1, Ray Society, London

    Google Scholar 

  • Migge S, Maraun M, Scheu S, Schaefer M (1998) The oribatid mite community (Acarina) on pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) at different age. Appl Soil Ecol 9: 119–126

    Article  Google Scholar 

  • Migge-Kleian S, McLean MA, Maerz JC, Heneghan L (2006) The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biol Invasions 8: 1275–1285

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relationship between δ15N and animal age. Geochim Cosmochim Acta 48: 1135–1140

    Article  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Google Scholar 

  • Norton RA, Bonamo PM, Grierson JD, Shear WA (1988) Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol 62: 421–499

    Google Scholar 

  • Norton RA, Palmer SC (1991) The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R, Murphy W (eds) The Acari: Reproduction, Development and Life-History Strategies. Chapman and Hall, London, pp. 107–136

    Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, OConnor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and Diversity of Sex Ratios. Chapman and Hall, New York, pp. 8–99

    Google Scholar 

  • Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Houck MA (ed) Mites: Ecological and Evolutionary Studies of Life-History Patterns. Chapmann and Hall, New York, pp. 99–135

    Google Scholar 

  • Otto J (1997) Observations on prelarvae in Anystidae and Tenerifiidae. In: Mitchell R, Horn DJ, Needham GR, Welbourn WC (eds) Acarology IX. Proc Vol. 1. Ohio Biological Survey, Columbus, OH, pp. 343–354

    Google Scholar 

  • Palmer SC, Norton RA (1992) Genetic diversity in thelytokous oribatid mites (Acari; Acariformes: Desmonomata). Biochem Syst Ecol 20: 219–231

    Article  Google Scholar 

  • Perrot-Minnot MJ, Norton RA (1997) Obligate thelytoky in oribatid mites: no evidence for Wolbachia-inducement. Can Entomol 129: 691–698

    Article  Google Scholar 

  • Peschel K, Norton RA, Scheu S, Maraun M (2006) Do oribatid mites live in enemy-free space? Evidence from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol Biochem 38: 2985–2989

    Article  CAS  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718

    Article  Google Scholar 

  • Renker C, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microbiol Ecol 50: 518–528

    Article  CAS  Google Scholar 

  • Salamon JA, Alphei J, Ruf A, Schaefer M, Scheu S, Schneider K, Sührig A, Maraun M (2006) Transitory dynamic effects in the soil invertebrate community in a temperate deciduous forest: effects of resource quality. Soil Biol Biochem 38: 209–221

    CAS  Google Scholar 

  • Sanders FH, Norton RA (2004) Anatomy and function of the ptychoid defensive mechanism in the mite Euphthiracarus cooki (Acari: Oribatida). J Morphol 259: 119–154

    Article  PubMed  Google Scholar 

  • Schaefer I, Domes K, Heethoff M, Schneider K, Schön I, Norton RA, Scheu S, Maraun M (2006) No evidence for the ‘Meselson effect’ in parthenogenetic oribatid mites (Acari, Oribatida). J Evol Biol 19: 184–193

    Article  PubMed  CAS  Google Scholar 

  • Schatz H (2002) Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758–2001) – eine Analyse. Abh Ber Naturkundemus Görlitz 72: 37–45

    Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food webs. In: Hawkins BA, Tscharntke T (eds) Multitrophic Level Interactions. Cambridge University Press, Cambridge, UK, pp. 223–264

    Chapter  Google Scholar 

  • Schmelzle S, Norton RA, Helfen L, Heethoff M (2008) The ptychoid defensive mechanism in Euphthiracaroidea (Acari: Oribatida): a comparison of exoskeletal elements. Soil Org 80: 233–247

    Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in oribatid mites (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36: 1769–1774

    Article  CAS  Google Scholar 

  • Schneider K, Maraun M (2005) Feeding preferences among dark pigmented fungi (Dematiacea) indicate trophic niche differentiation of oribatid mites. Pedobiologia 49: 61–67

    Article  Google Scholar 

  • Schneider K, Renker C, Scheu S, Maraun M (2005) Oribatid mite feeding on ectomycorrhizal fungi. Mycorrhiza 16: 67–72

    Article  PubMed  Google Scholar 

  • Shear WA, Bonamo M, Grierson JD, Rolfe WDI, Smith EL, Norton RA (1984) Early land animals on North America: evidence from Devonian age arthropods from Gilboa, New York. Science 224: 492–494

    Article  PubMed  CAS  Google Scholar 

  • Sokolov II (1954) The chromosome complex of mites and its importance for systematics and phylogeny. Tr O Estestvoispyt 72: 124–159

    Google Scholar 

  • Sovik G, Leinaas HP (2003) Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acari, Oribatida) from Svalbard. Polar Biol 26: 500–508

    Article  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53: 71–102

    Article  PubMed  CAS  Google Scholar 

  • Subias LS (2004) Listado sistimatico, sininimico y biogeografico de los Acaros Oribatidos (Acariformes, Oribatida) del mundo (1748–2002). Graellsia 60: 3–305

    Google Scholar 

  • Taberly G (1987) Recherches sur la parthéogenèse thélytoque de deux espèces d’acariens oribatides: Trypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). III. Etude anatomique, histologique et cytologique des femelles parthénogenétiques. Acarologia 28: 389–403

    Google Scholar 

  • Taberly G (1988) Recherches sur la parthénogenèse thélytoque de deux espèces d’acariens oribatides: Trypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). IV. Observation sur les males ataviques. Acarologia 29: 95–107

    Google Scholar 

  • Van Valen LM (1973) A new evolutionary law. Evol Theory 1: 1–30

    Google Scholar 

  • Wallwork JA (1977) The structure of the ovipositor and the mechanisms of oviposition in the oribatid mite Machadobelba symmetrica Bal. (Acari: Cryptostigmata). Acarologia 19: 149–154

    Google Scholar 

  • Walter DE, Proctor HC (1999) Mites. Ecology, Evolution and Behaviour. CAB International, Oxon

    Google Scholar 

  • Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond B 270: 1857–1865

    Article  Google Scholar 

  • Weigmann G (1996) Hypostome morphology of Malaconothridae and phylogenetic conclusions on primitive Oribatida. In: Mitchell R, Horn DJ, Needham GJ, Welbourn WC (eds) Acarology IX, vol 1, Proc, Ohio Biological Survey, Columbus, OH, pp. 273–276

    Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). Goecke and Evers, Keltern

    Google Scholar 

  • White MJD (1973) Animal Cytology and Evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wrensch DL, Kethley JB, Norton RA (1994) Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck MA (ed) Mites: Ecological and Evolutionary analyses of life-history pattern. Chapman and Hall, New York, pp. 282–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Heethoff .

Editor information

Editors and Affiliations

Glossary

Hysterosoma:

the hind body division of Acari consisting of the opisthosoma and the metopodosoma (segments bearing the two hind legs)

Meros:

distal part of the ovary in Acari with vitellogenetic oocytes

Proterosoma:

the fore body division of Acari consisting of the gnathosoma (mouthparts) and the fore two segments with walking legs

Rhodoid:

central part of the ovary in Acari with previtellogenetic oocytes

Vitellogenesis:

process of yolk deposition and formation via nutrients being deposited in the oocyte

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heethoff, M., Norton, R.A., Scheu, S., Maraun, M. (2009). Parthenogenesis in Oribatid Mites (Acari, Oribatida): Evolution Without Sex. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_12

Download citation

Publish with us

Policies and ethics