Skip to main content

Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals

  • Chapter
  • First Online:
Stem Cells in Marine Organisms

Abstract

From oogenesis through fertilization and gastrulation, embryos use various mechanisms to regulate cell expansion, keeping a strict balance between cell proliferation, cell differentiation and cell death. While rapid divisions are necessary at the initial stage to ensure early embryo survival, further developmental transitions are marked by changes in cell cycle and transcriptional regulation. Pluripotency and capability of self-renewal are maintained in a low percentage of cells, the embryonic stem cells (ESCs), which will be later used as a cellular source for tissue replacement. Clearly, some essential characteristics of cell cycle and transcriptional regulation of the early embryo will be conserved in ESC lines. We addressed here the peculiarities of these developmental programs in early embryos and pluripotent embryonic cell lines, considering examples from marine invertebrates to mammals. Finally, we discussed the importance of transcription regulation and chromatin remodelling and their peculiar features in embryonic cells from these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8(3):145–155

    Article  CAS  Google Scholar 

  • Anderson JA, Lewellyn AL, Maller JL (1997) Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. Mol Biol Cell 8(7):1195–1206

    CAS  Google Scholar 

  • Balhorn R, Cosman M, Thornton K, Krishnan VV, Corzett M, Bench G, Kramer C, Lee JI, Hud NV, Allen M, Prieto M, Meyer-Ilse W, Brown JT, Kirz J, Zhang X, Bradbury EM, Maki G, Braun RE, Breed W (1999) Protamine mediated condensation of DNA in mammalian sperm. In: Gagnon C (ed) Stem cells in Marine Organisms. Cache Rivers Press, Vienna, pp 55–70

    Google Scholar 

  • Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207

    Article  CAS  Google Scholar 

  • Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5(10):792–804

    Article  CAS  Google Scholar 

  • Bartova E, Krejci J, Harnicarova A, Kozubek S (2008) Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76(1):24–32

    CAS  Google Scholar 

  • Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209(3):883–893

    Article  CAS  Google Scholar 

  • Bell SP (2002) The origin recognition complex: From simple origins to complex functions. Genes Dev 16(6):659–672

    Article  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  CAS  Google Scholar 

  • Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6(11):872–884

    Article  CAS  Google Scholar 

  • Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs MA, Kirk J, Gannon J, Hunt T (1998) Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci USA 95(8):4344–4349

    Article  CAS  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195

    Article  CAS  Google Scholar 

  • Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20(13):1744–1754

    Article  CAS  Google Scholar 

  • Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12(9):432–438

    Article  CAS  Google Scholar 

  • Byrne JA (2008) Generation of isogenic pluripotent stem cells. Hum Mol Genet 17(R1):R37–R41

    Article  CAS  Google Scholar 

  • Byrne JA, Mitalipov SM, Clepper L, Wolf DP (2006) Transcriptional profiling of rhesus monkey embryonic stem cells. Biol Reprod 75(6):908–915

    Article  CAS  Google Scholar 

  • Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502

    Article  CAS  Google Scholar 

  • Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450(7173):1230–1234

    Article  CAS  Google Scholar 

  • Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28(1):82–86

    Article  CAS  Google Scholar 

  • Chung HM, Malacinski GM (1980) Establishment of the dorsal/ventral polarity of the amphibian embryo: Use of ultraviolet irradiation and egg rotation as probes. Dev Biol 80(1):120–133

    Article  CAS  Google Scholar 

  • Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H, Sicinski P (2002) Development of mice expressing a single D-type cyclin. Genes Dev 16(24):3277–3289

    Article  CAS  Google Scholar 

  • Ciemerych MA, Sicinski P (2005) Cell cycle in mouse development. Oncogene 24(17):2877–2898

    Article  CAS  Google Scholar 

  • Ciliberto A, Petrus MJ, Tyson JJ, Sible JC (2003) A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos. Biophys Chem 104(3):573–589

    Article  CAS  Google Scholar 

  • Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24(17):2796–2809

    Article  CAS  Google Scholar 

  • Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, Harlow E, Beach D, Weinberg RA, Jacks T (1996) Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev 10(13):1633–1644

    Article  CAS  Google Scholar 

  • Conn CW, Lewellyn AL, Maller JL (2004) The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio. Dev Cell 7(2):275–281

    Article  CAS  Google Scholar 

  • Cosgrove RA, Philpott A (2007) Cell cycling and differentiation do not require the retinoblastoma protein during early Xenopus development. Dev Biol 303(1):311–324

    Article  CAS  Google Scholar 

  • Crane-Robinson C (1999) How do linker histones mediate differential gene expression? Bioessays 21(5):367–371

    Article  CAS  Google Scholar 

  • Croce JC, McClay DR (2006) The canonical Wnt pathway in embryonic axis polarity. Semin Cell Dev Biol 17(2):168–174

    Article  CAS  Google Scholar 

  • Danilchik MV, Denegre JM (1991) Deep cytoplasmic rearrangements during early development in Xenopus laevis. Development 111(4):845–856

    CAS  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, te Riele H (2000) Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14(23):3051–3064

    Article  CAS  Google Scholar 

  • Datar SA, Jacobs HW, de la Cruz AF, Lehner CF, Edgar BA (2000) The Drosophila cyclin D-Cdk4 complex promotes cellular growth. Embo J 19(17):4543–4554

    Article  CAS  Google Scholar 

  • Davidson E (1986) Gene activity in early development, 3rd edn. Academic Press, New York

    Google Scholar 

  • Destree OH, Lam KT, Peterson-Maduro LJ, Eizema K, Diller L, Gryka MA, Frebourg T, Shibuya E, Friend SH (1992) Structure and expression of the Xenopus retinoblastoma gene. Dev Biol 153(1):141–149

    Article  CAS  Google Scholar 

  • Dimitrov S, Wolffe AP (1996) Remodeling somatic nuclei in Xenopus laevis egg extracts: Molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence. Embo J 15(21):5897–5906

    CAS  Google Scholar 

  • Driesch H (1891) Entwicklungsmechanische studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugung von Tell und Doppelbildungen. Z Wiss Zool 53:160–178 and 183–184

    Google Scholar 

  • Duboc V, Lepage T (2008) A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. J Exp Zool B Mol Dev Evol 310(1):41–53

    Article  CAS  Google Scholar 

  • Duboc V, Rottinger E, Lapraz F, Besnardeau L, Lepage T (2005) Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev Cell 9(1):147–158

    Article  CAS  Google Scholar 

  • Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130(18):4235–4248

    Article  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396

    Article  CAS  Google Scholar 

  • Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S (2004) Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene 23(2):491–502

    Article  CAS  Google Scholar 

  • Fang F, Newport JW (1991) Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66(4):731–742

    Article  CAS  Google Scholar 

  • Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Geneviere AM (2006) The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 300(1):238–251

    Article  CAS  Google Scholar 

  • Ferrell JE Jr, Wu M, Gerhart JC, Martin GS (1991) Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 11(4):1965–1971

    CAS  Google Scholar 

  • Finkielstein CV, Chen LG, Maller JL (2002) A role for G1/S cyclin-dependent protein kinases in the apoptotic response to ionizing radiation. J Biol Chem 277(41):38476–38485

    Article  CAS  Google Scholar 

  • Finkielstein CV, Lewellyn AL, Maller JL (2001) The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage. Proc Natl Acad Sci USA 98(3):1006–1011

    Article  CAS  Google Scholar 

  • Fluckiger AC, Marcy G, Marchand M, Negre D, Cosset FL, Mitalipov S, Wolf D, Savatier P, Dehay C (2006) Cell cycle features of primate embryonic stem cells. Stem Cells 24(3):547–556

    Article  CAS  Google Scholar 

  • Frehlick LJ, Eirin-Lopez JM, Jeffery ED, Hunt DF, Ausio J (2006) The characterization of amphibian nucleoplasmins yields new insight into their role in sperm chromatin remodeling. BMC Genomics 7:99

    Article  CAS  Google Scholar 

  • Fujii-Yamamoto H, Kim JM, Arai K, Masai H (2005) Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J Biol Chem 280(13):12976–12987

    Article  CAS  Google Scholar 

  • Gan Q, Yoshida T, McDonald OG, Owens GK (2007) Concise review: Epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25(1):2–9

    Article  CAS  Google Scholar 

  • Gardner RL, Beddington RS (1988) Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci Suppl 10:11–27

    CAS  Google Scholar 

  • Geneviere-Garrigues AM, Barakat A, Doree M, Moreau JL, Picard A (1995) Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis. J Cell Sci 108 (Pt 7):2693–2703

    CAS  Google Scholar 

  • Gerhart J (2006) The deuterostome ancestor. J Cell Physiol 209(3):677–685

    Article  CAS  Google Scholar 

  • Giudice G (1999) Genes and their products in sea urchin development. Curr Top Dev Biol 45:41–116

    Article  CAS  Google Scholar 

  • Gonzalez MA, Tachibana KE, Adams DJ, van der Weyden L, Hemberger M, Coleman N, Bradley A, Laskey RA (2006) Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development. Genes Dev 20(14):1880–1884

    Article  CAS  Google Scholar 

  • Graham CF, Morgan RW (1966) Changes in cell cycle during early amphibian development. Dev Biol 14:439–460

    Article  Google Scholar 

  • Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128(4):721–733

    Article  CAS  Google Scholar 

  • Gurdon JB (1976) Injected nuclei in frog oocytes: Fate, enlargement, and chromatin dispersal. J Embryol Exp Morphol 36(3):523–540

    CAS  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13:611–667

    Article  CAS  Google Scholar 

  • Hartley RS, Rempel RE, Maller JL (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Dev Biol 173(2):408–419

    Article  CAS  Google Scholar 

  • Hartley RS, Sible JC, Lewellyn AL, Maller JL (1997) A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos. Dev Biol 188(2):312–321

    Article  CAS  Google Scholar 

  • Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 16(3):247–255

    Article  CAS  Google Scholar 

  • Hensey C, Gautier J (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mech Dev 69(1–2):183–195

    Article  CAS  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the Mouse Embryo: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ (2007) Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614(1–2):48–55

    CAS  Google Scholar 

  • Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101(40):14443–14448

    Article  CAS  Google Scholar 

  • Howe JA, Howell M, Hunt T, Newport JW (1995) Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev 9(10):1164–1176

    Article  CAS  Google Scholar 

  • Howe JA, Newport JW (1996) A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. Proc Natl Acad Sci USA 93(5):2060–2064

    Article  CAS  Google Scholar 

  • Hyrien O, Maric C, Mechali M (1995) Transition in specification of embryonic metazoan DNA replication origins. Science 270(5238):994–997

    Article  CAS  Google Scholar 

  • Imhof A (2006) Epigenetic regulators and histone modification. Brief Funct Genomic Proteomic 5(3):222–227

    Article  CAS  Google Scholar 

  • Imschenetzky M, Puchi M, Morin V, Medina R, Montecino M (2003) Chromatin remodeling during sea urchin early development: Molecular determinants for pronuclei formation and transcriptional activation. Gene 322:33–46

    Article  CAS  Google Scholar 

  • Iribarren C, Morin V, Puchi M, Imschenetzky M (2008) Sperm nucleosomes disassembly is a requirement for histones proteolysis during male pronucleus formation. J Cell Biochem 103(2):447–455

    Article  CAS  Google Scholar 

  • Iwamori N, Naito K, Sugiura K, Tojo H (2002) Preimplantation-embryo-specific cell cycle regulation is attributed to the low expression level of retinoblastoma protein. FEBS Lett 526(1–3):119–123

    Article  CAS  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582

    Article  CAS  Google Scholar 

  • Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10(3):353–360

    Article  CAS  Google Scholar 

  • Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P (2002) Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21(36):5515–5528

    Article  CAS  Google Scholar 

  • Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119(2):447–456

    CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132(6):1049–1061

    Article  CAS  Google Scholar 

  • Kim JM, Yamada M, Masai H (2003) Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development. Mutat Res 532(1–2):29–40

    CAS  Google Scholar 

  • Kumagai A, Guo Z, Emami KH, Wang SX, Dunphy WG (1998) The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J Cell Biol 142(6):1559–1569

    Article  CAS  Google Scholar 

  • Kurokawa D, Akasaka K, Mitsunaga-Nakatsubo K, Shimada H (1997) Cloning of cyclin E cDNA of the sea urchin, Hemicentrotus pulcherrimus. Zool Sci 14(5):791–794

    Article  CAS  Google Scholar 

  • Laslett AL, Grimmond S, Gardiner B, Stamp L, Lin A, Hawes SM, Wormald S, Nikolic-Paterson D, Haylock D, Pera MF (2007) Transcriptional analysis of early lineage commitment in human embryonic stem cells. BMC Dev Biol 7:12

    Article  CAS  Google Scholar 

  • Le Bouffant R, Cormier P, Cueff A, Belle R, Mulner-Lorillon O (2007) Sea urchin embryo as a model for analysis of the signaling pathways linking DNA damage checkpoint, DNA repair and apoptosis. Cell Mol Life Sci 64(13):1723–1734

    Article  CAS  Google Scholar 

  • LeCouter JE, Kablar B, Hardy WR, Ying C, Megeney LA, May LL, Rudnicki MA (1998a) Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the Rb-related p107 gene. Mol Cell Biol 18(12):7455–7465

    CAS  Google Scholar 

  • LeCouter JE, Kablar B, Whyte PF, Ying C, Rudnicki MA (1998b) Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125(23):4669–4679

    CAS  Google Scholar 

  • Lee SY, Jeon DG, Lee JS, Hwang CS, Huh K, Lee TW, Hong SI (1996) Deletion of Rb1 gene in late osteosarcoma from survivor of unilateral retinoblastoma – a case report. J Korean Med Sci 11(1):94–98

    CAS  Google Scholar 

  • Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechali M (2005) Mitotic remodeling of the replicon and chromosome structure. Cell 123(5):787–801

    Article  CAS  Google Scholar 

  • Liang J, Wan M, Zhang Y, Gu P, Xin H, Jung SY, Qin J, Wong J, Cooney AJ, Liu D, Songyang Z (2008) Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 10(6):731–739

    Article  CAS  Google Scholar 

  • Liu SV (2008) iPS cells: A more critical review. Stem Cells Dev 17(3):391–397

    Article  Google Scholar 

  • Loeb J (1894) Ueber eine einfache Methode, zwei oder mehr zusammengewachsene Embryonen aus einem Ei hervorzubringen. Pflügers Arch 55:525–530

    Article  Google Scholar 

  • Ma C, Collodi P (1999) Preparation of primary cell cultures from lamprey. Methods Cell Sci 21(1):39–46

    Article  CAS  Google Scholar 

  • MacQueen HA, Johnson MH (1983) The fifth cell cycle of the mouse embryo is longer for smaller cells than for larger cells. J Embryol Exp Morphol 77:297–308

    CAS  Google Scholar 

  • Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118(4):493–504

    Article  CAS  Google Scholar 

  • Mandl B, Brandt WF, Superti-Furga G, Graninger PG, Birnstiel ML, Busslinger M (1997) The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: Functional equivalence of the CS H1 and frog H1M (B4) proteins. Mol Cell Biol 17(3):1189–1200

    CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638

    Article  CAS  Google Scholar 

  • Massague J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  CAS  Google Scholar 

  • Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T (1999) STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. Embo J 18(15):4261–4269

    Article  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403(6769):501–502

    Article  CAS  Google Scholar 

  • Meijer L, Azzi L, Wang JY (1991) Cyclin B targets p34cdc2 for tyrosine phosphorylation. Embo J 10(6):1545–1554

    CAS  Google Scholar 

  • Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116

    Article  CAS  Google Scholar 

  • Meyer CA, Jacobs HW, Datar SA, Du W, Edgar BA, Lehner CF (2000) Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression. Embo J 19(17):4533–4542

    Article  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  Google Scholar 

  • Moore JC, Sumerel JL, Schnackenberg BJ, Nichols JA, Wikramanayake A, Wessel GM, Marzluff WF (2002) Cyclin D and cdk4 are required for normal development beyond the blastula stage in sea urchin embryos. Mol Cell Biol 22(13):4863–4875

    Article  CAS  Google Scholar 

  • Moreau JL, Marques F, Barakat A, Schatt P, Lozano JC, Peaucellier G, Picard A, Geneviere AM (1998) Cdk2 activity is dispensable for the onset of DNA replication during the first mitotic cycles of the sea urchin early embryo. Dev Biol 200(2):182–197

    Article  CAS  Google Scholar 

  • Mulligan GJ, Wong J, Jacks T (1998) p130 is dispensable in peripheral T lymphocytes: Evidence for functional compensation by p107 and pRB. Mol Cell Biol 18(1):206–220

    CAS  Google Scholar 

  • Mullins LJ, Wilmut I, Mullins JJ (2004) Nuclear transfer in rodents. J Physiol 554(Pt 1):4–12

    Article  CAS  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2001) Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 237(1):1–17

    Article  CAS  Google Scholar 

  • Murphy M (1999) Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet 23(4):481

    Article  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  Google Scholar 

  • Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M, Tanaka S, Shiota K, Nakano T (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9(1):64–71

    Article  CAS  Google Scholar 

  • Newport J, Dasso M (1989) On the coupling between DNA replication and mitosis. J Cell Sci Suppl 12:149–160

    CAS  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30(3):687–696

    Article  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  CAS  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646

    Article  CAS  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12(13):2048–2060

    Article  CAS  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    Article  CAS  Google Scholar 

  • Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23(16):2797–2808

    Article  CAS  Google Scholar 

  • Ohtsuka S, Dalton S (2008) Molecular and biological properties of pluripotent embryonic stem cells. Gene Ther 15(2):74–81

    Article  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  Google Scholar 

  • Oliver MI, Rodriguez C, Bustos P, Morin V, Gutierrez S, Montecino M, Geneviere AM, Puchi M, Imschenetzky M (2003) Conservative segregation of maternally inherited CS histone variants in larval stages of sea urchin development. J Cell Biochem 88(4):643–649

    Article  CAS  Google Scholar 

  • Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128

    Article  CAS  Google Scholar 

  • Orkin SH (2003) Priming the hematopoietic pump. Immunity 19(5):633–634

    Article  CAS  Google Scholar 

  • Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J, Etches RJ (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122(8):2339–2348

    CAS  Google Scholar 

  • Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z, Amati B (2003) Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. Embo J 22(18):4794–4803

    Article  CAS  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  CAS  Google Scholar 

  • Park M, Krause MW (1999) Regulation of postembryonic G(1) cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex. Development 126(21):4849–4860

    CAS  Google Scholar 

  • Pau KY, Wolf DP (2004) Derivation and characterization of monkey embryonic stem cells. Reprod Biol Endocrinol 2:41

    Article  CAS  Google Scholar 

  • Peng A, Lewellyn AL, Maller JL (2007) Undamaged DNA transmits and enhances DNA damage checkpoint signals in early embryos. Mol Cell Biol 27(19):6852–6862

    Article  CAS  Google Scholar 

  • Peng A, Lewellyn AL, Maller JL (2008) DNA damage signaling in early Xenopus embryos. Cell Cycle 7(1):3–6

    CAS  Google Scholar 

  • Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein-chromatin interactions in vivo: Three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24(14):6393–6402

    Article  CAS  Google Scholar 

  • Philpott A, Krude T, Laskey RA (2000) Nuclear chaperones. Semin Cell Dev Biol 11(1):7–14

    Article  CAS  Google Scholar 

  • Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H, Miura S, Mishina Y, Zhao GQ (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA 101(16):6027–6032

    Article  CAS  Google Scholar 

  • Rempel RE, Sleight SB, Maller JL (1995) Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem 270(12):6843–6855

    Article  CAS  Google Scholar 

  • Rideout WM, 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109(1):17–27

    Article  CAS  Google Scholar 

  • Rossant J (2008) Stem cells and early lineage development. Cell 132(4):527–531

    Article  CAS  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, Theodorou E, Jacks T (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14(23):3037–3050

    Article  CAS  Google Scholar 

  • Samanta MP, Tongprasit W, Istrail S, Cameron RA, Tu Q, Davidson EH, Stolc V (2006) The transcriptome of the sea urchin embryo. Science 314(5801):960–962

    Article  CAS  Google Scholar 

  • Sanchez Alvarado A (2007) Stem cells and the Planarian Schmidtea mediterranea. C R Biol 330(6–7):498–503

    Article  CAS  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448(7155):811–815

    Article  CAS  Google Scholar 

  • Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9(3):809–818

    CAS  Google Scholar 

  • Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12(2):309–322

    CAS  Google Scholar 

  • Scharf SR, Gerhart JC (1980) Determination of the dorsal-ventral axis in eggs of Xenopus laevis: Complete rescue of uv-impaired eggs by oblique orientation before first cleavage. Dev Biol 79(1):181–198

    Article  CAS  Google Scholar 

  • Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19:589–621

    Article  CAS  Google Scholar 

  • Schnackenberg BJ, Palazzo RE, Marzluff WF (2007) Cyclin E/Cdk2 is required for sperm maturation, but not DNA replication, in early sea urchin embryos. Genesis 45(5):282–291

    Article  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128(4):735–745

    Article  CAS  Google Scholar 

  • Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15(8):531–538

    Article  CAS  Google Scholar 

  • Shou W, Dunphy WG (1996) Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol Biol Cell 7(3):457–469

    CAS  Google Scholar 

  • Silva J, Smith A (2008) Capturing pluripotency. Cell 132(4):532–536

    Article  CAS  Google Scholar 

  • Skottman H, Hovatta O (2006) Culture conditions for human embryonic stem cells. Reproduction 132(5):691–698

    Article  CAS  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: Of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  CAS  Google Scholar 

  • Snape A, Wylie CC, Smith JC, Heasman J (1987) Changes in states of commitment of single animal pole blastomeres of Xenopus laevis. Dev Biol 119(2):503–510

    Article  CAS  Google Scholar 

  • Snow MHL (1977) Gastrulation in the mouse: Growth and regionalization of the epiblast. J Embryol ExpMorphol 42:293–303

    Google Scholar 

  • Solter D (2006) From teratocarcinomas to embryonic stem cells and beyond: A history of embryonic stem cell research. Nat Rev Genet 7(4):319–327

    Article  CAS  Google Scholar 

  • Solter D, Skreb N, Damjanov I (1971) Cell cycle analysis in the mouse EGG-cylinder. Exp Cell Res 64(2):331–334

    Article  CAS  Google Scholar 

  • Spradling AC (1999) ORC binding, gene amplification, and the nature of metazoan replication origins. Genes Dev 13(20):2619–2623

    Article  CAS  Google Scholar 

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21(54):8320–8333

    Article  CAS  Google Scholar 

  • Stern CD (2006) Evolution of the mechanisms that establish the embryonic axes. Curr Opin Genet Dev 16(4):413–418

    Article  CAS  Google Scholar 

  • Su JY, Rempel RE, Erikson E, Maller JL (1995) Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27XIC1. Proc Natl Acad Sci USA 92(22):10187–10191

    Article  CAS  Google Scholar 

  • Suda Y, Suzuki M, Ikawa Y, Aizawa S (1987) Mouse embryonic stem cells exhibit indefinite proliferative potential. J Cell Physiol 133(1):197–201

    Article  CAS  Google Scholar 

  • Suemori H, Tada T, Torii R, Hosoi Y, Kobayashi K, Imahie H, Kondo Y, Iritani A, Nakatsuji N (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 222(2):273–279

    Article  CAS  Google Scholar 

  • Sumerel JL, Moore JC, Schnackenberg BJ, Nichols JA, Canman JC, Wessel GM, Marzluff WF (2001) Cyclin E and its associated cdk activity do not cycle during early embryogenesis of the sea Urchin. Dev Biol 234(2):425–440

    Article  CAS  Google Scholar 

  • Sumi T, Fujimoto Y, Nakatsuji N, Suemori H (2004) STAT3 is dispensable for maintenance of self-renewal in nonhuman primate embryonic stem cells. Stem Cells 22(5):861–872

    Article  CAS  Google Scholar 

  • Sutovsky P, Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol Reprod 56(6):1503–1512

    Article  CAS  Google Scholar 

  • Sutovsky P, Schatten G (2000) Paternal contributions to the mammalian zygote: Fertilization after sperm-egg fusion. Int Rev Cytol 195:1–65

    Article  CAS  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  • Tanaka M, Hennebold JD, Macfarlane J, Adashi EY (2001) A mammalian oocyte-specific linker histone gene H1oo: Homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128(5):655–664

    CAS  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92(17):7844–7848

    Article  CAS  Google Scholar 

  • Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50(5):455–461

    CAS  Google Scholar 

  • Vallier L, Pedersen RA (2005) Human embryonic stem cells: An in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev 1(2):119–130

    Article  CAS  Google Scholar 

  • Vernon AE, Devine C, Philpott A (2003) The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development 130(1):85–92

    Article  CAS  Google Scholar 

  • Vernon AE, Philpott A (2003a) The developmental expression of cell cycle regulators in Xenopus laevis. Gene Exp Patterns 3(2):179–192

    Article  CAS  Google Scholar 

  • Vernon AE, Philpott A (2003b) A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus. Development 130(1):71–83

    Article  CAS  Google Scholar 

  • Vincent JP, Scharf SR, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: A preliminary study of its mechanochemical basis. Cell Motil Cytoskeleton 8(2):143–154

    Article  CAS  Google Scholar 

  • Weissman IL (2000) Stem cells: Units of development, units of regeneration, and units in evolution. Cell 100(1):157–168

    Article  CAS  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    Article  CAS  Google Scholar 

  • White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 16(4):2018–2027

    Article  CAS  Google Scholar 

  • Whitman M (2001) Nodal signaling in early vertebrate embryos: Themes and variations. Dev Cell 1(5):605–617

    Article  CAS  Google Scholar 

  • Wianny F, Bernat A, Huissoud C, Marcy G, Markossian S, Cortay V, Giroud P, Leviel V, Kennedy H, Savatier P, Dehay C (2008) Derivation and cloning of a novel rhesus embryonic stem cell line stably expressing tau-green fluorescent protein. Stem Cells 26(6):1444–1453

    Article  CAS  Google Scholar 

  • Wikenheiser-Brokamp KA (2006) Retinoblastoma family proteins: Insights gained through genetic manipulation of mice. Cell Mol Life Sci 63(7–8):767–780

    Article  CAS  Google Scholar 

  • Wright SJ (1999) Sperm nuclear activation during fertilization. Curr Top Dev Biol 46:133–178

    Article  CAS  Google Scholar 

  • Wroble BN, Finkielstein CV, Sible JC (2007) Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis. BMC Dev Biol 7:119

    Article  CAS  Google Scholar 

  • Wu L, de Bruin A, Saavedra HI, Starovic M, Trimboli A, Yang Y, Opavska J, Wilson P, Thompson JC, Ostrowski MC, Rosol TJ, Woollett LA, Weinstein M, Cross JC, Robinson ML, Leone G (2003) Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421(6926):942–947

    Article  CAS  Google Scholar 

  • Xie Y, Sun T, Wang QT, Wang Y, Wang F, Puscheck E, Rappolee DA (2005) Acquisition of essential somatic cell cycle regulatory protein expression and implied activity occurs at the second to third cell division in mouse preimplantation embryos. FEBS Lett 579(2):398–408

    Article  CAS  Google Scholar 

  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235(9):2301–2314

    Article  CAS  Google Scholar 

  • Yamashita N, Kim JM, Koiwai O, Arai K, Masai H (2005) Functional analyses of mouse ASK, an activation subunit for Cdc7 kinase, using conditional ASK knockout ES cells. Genes Cells 10(6):551–563

    Article  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    Article  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. H. Escriva and C. Iribarren for helpful discussions and suggestions. This work was partially supported by grants from: Ligue contre le cancer (France), Italian Association for Cancer Research (AIRC); Italian Health Ministry and Ministry for the Instruction, University and Research (PRIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Genevière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Genevière, AM., Aze, A., Even, Y., Imschenetzky, M., Nervi, C., Vitelli, L. (2009). Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals. In: Rinkevich, B., Matranga, V. (eds) Stem Cells in Marine Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2767-2_9

Download citation

Publish with us

Policies and ethics