Skip to main content

Regenerating Echinoderms: A Promise to Understand Stem Cells Potential

  • Chapter
  • First Online:

Abstract

The potential for regenerating tissues, organs and body parts, even the ability to reconstruct virtually a complete animal from a body fragment, is expressed to a maximum extent in echinoderms which provide fantastic and tractable models for the study of regeneration. Regenerative processes are common in all classes of the phylum, even though specific capabilities differ remarkably between the classes, depending on individual potential of morphogenetic and histogenetic plasticity at tissue and most of all at cellular levels. These phenomena, particularly in adults, imply the existence of stem cells which can be present in the circulating fluids or in the tissues in the form of resident cells, ready to be recruited in the repair and regenerative processes that follow traumatic or self-induced damage. In spite of the impressive effectiveness of their regenerative processes, only a few model systems for the study of regeneration have been developed in echinoderms, each model being unique for its specificity and versatility, and useful for unravelling peculiar aspects of the phenomenon. In addition, larvae of all classes display a unique capacity for rapid regeneration regardless of their developmental stage, showing an unexpected plasticity in terms of processes and mechanisms closely related to events of asexual reproduction and cloning. On the basis of their regenerative potential echinoderms can provide a broad range of valuable new deuterostome models for the study of regeneration genetics, with potential applications in vertebrate regeneration. Since the complexity of the echinoderm genome, as exemplified by the sea urchin genome project, indicates that echinoderms share at least 70% of their proteins with mankind, we shall consider how this provides an important tool kit to aid our understanding of the phenomenon as well as support the development of realistic methods to pursue tissue and organ regeneration in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2005) Afuni, a novel transforming growth factorbeta gene is involved in arm regeneration by the brittle star Amphiura filiformis. Dev Genes Evol 215:393–401

    Article  CAS  Google Scholar 

  • Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2008) Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis. Dev Genes Evol 218:33–38

    Article  CAS  Google Scholar 

  • Bonasoro F, Ferro P, Di Benedetto C, Sugni M, Mozzi D, Candia-Carnevali MD (2004) Regenerative potential of echinoid test. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: Munchen. Taylor & Francis Group, London, pp 97–103

    Google Scholar 

  • Bossche JP, Jangoux M (1976) Epithelial origin of starfish coelomocytes. Nature 261:227–228

    Article  CAS  Google Scholar 

  • Bulgakov VP, Odintosova NA, Plotnikov SV, Kislev KV, Zacharov VE, Zhuravlev YN (2002) Gal4-gene-dependent alterations of embryo development and cell growth in primary culture of sea urchins. Mar Biotech 4:480–486

    Article  CAS  Google Scholar 

  • Candia-Carnevali MD, Bruno L, Donini DS et al (1989) Regeneration and morphogenesis in the feather star arm. In: Kiortsis V, Koussoulakos S, Wallace H (eds) Recent trends in regeneration research. Nano Asi Series, Plenum Press, New York, London, pp 447–460

    Google Scholar 

  • Candia-Carnevali MD, Lucca E, Bonasoro F (1993) Mechanisms of arm regeneration in the feather star Antedon mediterranea: Healing of wound and early stages of development. J Exp Zool 267:299–317

    Article  Google Scholar 

  • Candia-Carnevali MD, Bonasoro F, Lucca E, Thorndyke MC (1995) Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea. J Exp Zool 272:464–474

    Article  Google Scholar 

  • Candia-Carnevali MD, Bonasoro F, Invernizzi R, Lucca E, Welsch U, Thorndyke MC (1996) Tissue distribution of monoamine neurotransmitters in normal and regenerating arrns of the feather star Antedon mediterranea. Cell Tissue Res 285:341–352

    Article  Google Scholar 

  • Candia-Carnevali MD, Bonasoro F, Biale A (1997) Pattern of bromodeoxyuridine incorporation in the advanced stages of arm regeneration in the feather star Antedon mediterranea. Cell Tissue Res 289:363–374

    Article  CAS  Google Scholar 

  • Candia-Carnevali MD, Bonasoro F, Patruno M et al (1998) Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: The potential of arm explants. Dev Genes Evol 208:421–430

    Article  CAS  Google Scholar 

  • Candia-Carnevali MD, Bonasoro F (2001a) A microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426

    Article  CAS  Google Scholar 

  • Candia-Carnevali MD, Bonasoro F (2001b) Introduction to the Biology of Regeneration in Echinoderms. Microsc Res Tech 55:365–368

    Article  CAS  Google Scholar 

  • Candia-Carnevali MD (2005) Regenerative response and Endocrine Disrupters in crinoid Echinoderms: An old experimental model, a new ecotoxicological test. In: Matranga V (ed) Echinodermata. Progr Mol Subcell Biol (Marine Molecular Biotechnology), vol 39. Springer-Verlag, Heidelberg, pp 167–198

    Google Scholar 

  • Candia-Carnevali MDC (2006) Regeneration in Echinoderms: Repair, regrowth, cloning. Invertebr Surviv J 3:64–76

    Google Scholar 

  • Carlson BM (1997) Development and regeneration, with special emphasis on the amphibian limb. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: From Invertebrates to Humans. John Wiley and Sons, Chichester, New York, pp 45–61

    Google Scholar 

  • Chia FS, Xing J (1996) Echinoderm coelomocytes. Zool Stud 35:231–254

    Google Scholar 

  • Clark AH (1921) A monograph of the existing crinoids. Vol 1. The comatulids. Part 1. Bull US Nat Mus 82:1–389

    Google Scholar 

  • Dendy A (1886) On the regeneration of the visceral mass in Antedon rosaceus, vol I. Stud. Biol. Lab. Owens College, Manchester, p 299

    Google Scholar 

  • Dolmatov I, Bonasoro F, Ferreri P, Candia-Carnevali MD (2003) Visceral regeneration in the crinoid Antedon mediterranea. In: Feral JP (ed) Echinoderm Research 2001. Balkema, Rotterdam, pp 215–220

    Google Scholar 

  • Dubois P, Ameye L (2001) Regeneration of spines and pedicellariae in echinoderms: A review. Micr Res Tech 55:427–437

    Article  CAS  Google Scholar 

  • Dupont S, Thorndyke MC (2006) Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis. J Exp Biol 209:3873–3881

    Article  Google Scholar 

  • Eaves AA, Palmer AR (2003) Widespread cloning in echinoderm larvae. Nature 425:146

    Article  CAS  Google Scholar 

  • Ferretti P, Géraudieu J (1997) Preface. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: From Invertebrates to Humans. John Wiley and Sons, Chichester, New York, pp XIX–XX

    Google Scholar 

  • Garcia-Arraras JE, Greenberg MJ (2001) Visceral regeneration in holothurians. Micr Res Tech 55:438–451

    Article  CAS  Google Scholar 

  • Goss RJ (1965) Mammalian regeneration and its phylogenetic relationships. In: Kiortsis V, Trampush HAL (eds) Regeneration in animals and related problems. North-Holland publishing Company, Amsterdam, pp 33–38

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, New York and London

    Google Scholar 

  • Goss RJ (1992) The evolution of regeneration: Adaptive or inherent? J Theor Biol 159:241–260

    Article  CAS  Google Scholar 

  • Graff JM (1997) Embryonic patterning: To BMP or not to BMP, that is the question. Cell 89:171–174

    Article  CAS  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C et al (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  Google Scholar 

  • Hyman HL (1955) The Invertebrates: Echinodermata, vol IV. McGraw-Hill, New York, Toronto, London, p 763

    Google Scholar 

  • Mashanov VS, Dolmatov IY (2004) Functional morphology of the developing alimentary canal in the holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota). Acta Zool 85:29–39

    Article  Google Scholar 

  • Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schroder HC, Muller WEG (2005) Monitoring chemical and physical stress using sea urchin immune cells. In: Matranga V (ed) Echinodermata. Springer, Heidelberg, pp 85–110

    Chapter  Google Scholar 

  • Minckert W (1905) Über Regeneration bei Comatuliden nebst Ausführungen über die Auffassung und Bedeutung der Syzygieen. Arch f Naturg Jahrg 71:163–244

    Google Scholar 

  • Mladenov PV, Bisgrove B, Asotra S, Burke RD (1989) Mechanisms of arm-tip regeneration in the sea star, Leptasterias hexactis. Roux’s Arch Dev Biol 189:19–28

    Article  Google Scholar 

  • Moss C, Hunter J, Thorndyke MC (1998) Pattern of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Phil Trans R Soc London B 353:421–436

    Article  CAS  Google Scholar 

  • Mozzi D, Ferreri P, Petrillo P, Dolmatov IY, Bonasoro F, Candia-Carnevali MD (2004) Graft and regeneration of viscerain the crinoid Antedon mediterranea. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München. Taylor & Francio Group, London, pp 135–139

    Google Scholar 

  • Mozzi D, Dolmatov I, Bonasoro F, Candia-Carnevali MD (2006) Visceral regeneration in the crinoid Antedon mediterranea: Basic mechanisms, tissues and cells involved in gut regeneration. Cent Eur J Biol 1(4):609–635

    Article  Google Scholar 

  • Odintsova NA, Dolmatov IYu, Mashanov VS (2005) Regenerating holothurian tissues as a source of cells for long-term cell cultures. Mar Biol 146:915–921

    Article  Google Scholar 

  • Odelberg SJ (2004), Unravelling the molecular basis for regenerative cellular plasticity. Plos Biol 2:1068–1071

    CAS  Google Scholar 

  • O’Kane S, Ferguson MW (1997) Transforming growth factor beta s and wound healing. Int J Biochem Cell Biol 29:63–78

    Article  Google Scholar 

  • Ottaviani E, Franceschi F (1997) The invertebrate phagocytic immunocyte: Clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18:169–174

    Article  CAS  Google Scholar 

  • Oweson C, Sköld H, Pinsino A, Matranga V, Hernroth B (2008) Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquat Toxicol 89:75–81

    Article  CAS  Google Scholar 

  • Parma L, Di Benedetto C, Denis Donini S, Cossu G, Candia-Carnevali MD (2006) Primary cell culture in crinoid echinoderms: Exploring the plasticità potential of regenerative competent cells. Proceedings of 3rd Eur Conf on Regeneration, EMBO Conference, 2006, p 21

    Google Scholar 

  • Patruno M, Smertenko A, Candia-Carnevali MD, Bonasoro F, Beesley PW, Thorndyke MC (2002) Expression of TGF-B-like molecules in normal and regenerating arms of the crinoid Antedon mediterranea: Immunocytochemical and biochemical evidence. Proc Roy Soc Lond B 269:1741–1747

    Article  CAS  Google Scholar 

  • Patruno M, McGonnell IM, Graham A, Beesley P, Candia-Carnevali MD, Thorndyke M (2003) AnBMP2/4 is a new member of the TGF-b superfamily isolated from a crinoid and involved in regeneration. Proc Roy Soc Lond B 270:1341–1347

    Article  CAS  Google Scholar 

  • Pearson H (2001) The regeneration gap. Nature 414:388–390

    Article  CAS  Google Scholar 

  • Perrier E (1873) L’anatomie et la régénération des bras de la comatula. Arch Zool Exp Gen 2:29–86

    Google Scholar 

  • Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 12:332–342

    Article  Google Scholar 

  • Reichensperger A (1912) Beiträge zur Histologie und zum Verlauf der Regeneration bei Crinoiden. Ztschr Wiss Zool 101:1–69

    Google Scholar 

  • Rinkevich B (2005) Marine invertebrate cell cultures new millennium trends. Mar Biotechnol 7:429–439

    Article  CAS  Google Scholar 

  • Runnström J (1915) Analytische Studien über die Seeigelentwicklung.II. Arch EntwMec Org 41:1–56

    Google Scholar 

  • Runnström J (1925) Zur Experimentaellen Analyse Der Entwiglung Von Antedon. Wilh Roux Arch Entw Mech Org 105:63–113

    Article  Google Scholar 

  • Sánchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: Genetic insights from diverse animal models. Nat Rev Genet 7:873–884

    Article  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    Article  Google Scholar 

  • Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells. Academic Press, New York, pp 513–562

    Google Scholar 

  • Stocum DL (2001) Stem cells in regenerative biology and medicine. Wound Repair Regen 9:429–442

    Article  CAS  Google Scholar 

  • Suárez-Castillo EC, Medina-Ortíz WE, Roig-López JL, García-Arrarás JE (2004) Ependymin, a gene involved in regeneration and neuroplasticity in vertebrates, is overexpressed during regeneration in the echinoderm Holothuria glaberrima. Gene 334:133–143

    Article  Google Scholar 

  • Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia-Carnevali MD (2007) Endocrine disrupting compounds and echinoderms: New ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 16:95–108

    Article  CAS  Google Scholar 

  • Sugni M, Manno V, Barbaglio A, Mozzi D, Bonasoro F, Tremolada P, Candia-Carnevali MD (2008) Echinoderm regenerative response as a sensitive ecotoxicological test for the exposure to endocrine disrupters: Effects of p,p’DDE and CPA on crinoid arm regeneration. Cell Biol Toxicol 24:573–586

    Google Scholar 

  • Thorndyke MC, Candia-Carnevali MD (2001) Regeneration neurohormones and growth factors in echinoderms. Can J Zool 79:1171–1208

    Article  CAS  Google Scholar 

  • Thorndyke MC, WC Chen, Beesley PW, Patruno M (2001) Molecular approach to echinoderm regeneration. Micr Res Tech 55:474–485

    Article  CAS  Google Scholar 

  • Thouveny Y, Tassava RA (1997) Regeneration through phylogenesis. In: Ferretti P, Géraudie J (eds) Cellularand molecular basis of regeneration: From Invertebrates to Humans. John Wiley and Sons, Chichester, New York, pp 9–43

    Google Scholar 

  • Weissman IL (2000) Stem Cells: Units of Development, Units of regeneration, and Units in Evolution. Cell 100:157–168

    Article  CAS  Google Scholar 

  • Wilkie IC (2001) Autotomy as a prelude to regeneration in echinoderms. Micr Res Tech 55:369–396

    Article  CAS  Google Scholar 

  • Wilkie IC (2005) Mutable collagenous tissue: Overview and biotechnological perspective. In: Matranga V (ed) Echinodermata. Progress in Molecular and Subcellular Biology (Marine Molecular Biotechnology), vol 39. Springer-Verlag, Heidelberg, pp 221–250

    Google Scholar 

  • Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer L, Matranga V (2003) Expression of univin, a TGF-B growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol. 246:217–227

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out thanks to the support of a number of specific projects financed through the years by CNR, MURST (COFIN 2003, 2006) and University of Milano (FIRST) programs. VM is grateful for the partial financial support of the Marine Genomics Europe Network of Excellence and MoMa ASI project. The first author is particularly grateful to the following colleagues for their indispensable help and valuable collaboration during the research work: Alice Barbaglio, Anna Biressi, Francesco Bonasoro, Giulio Cossu, Cristiano Di Benedetto, Suzanne Denis Donini, Daniela Mozzi, Lorenzo Parma, Marco Patruno, Michela Sugni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Daniela Candia-Carnevali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Candia-Carnevali, M.D., Thorndyke, M.C., Matranga, V. (2009). Regenerating Echinoderms: A Promise to Understand Stem Cells Potential. In: Rinkevich, B., Matranga, V. (eds) Stem Cells in Marine Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2767-2_7

Download citation

Publish with us

Policies and ethics