Skip to main content

Stem Cells, Chimerism and Tolerance: Lessons from Mammals and Ascidians

  • Chapter
  • First Online:
Stem Cells in Marine Organisms

Abstract

Chimerism is the presence of cells derived from more than one individual in a given individual. This phenomenon has been detected in a wide variety of multicellular organisms, including vertebrates. In mammals natural chimerism can develop from bidirectional trafficking of cells between multiple fetuses or between the fetus and its mother during pregnancy. Because stem cells are the only self-renewing cells in a tissue, it is likely that chimerism is sustained by stem cells. Colonial marine ascidians, like Botryllus schlosseri, may serve as an evolutionary model of chimerism. Colonies are initially formed by asexual reproduction of a founder individual, and the progeny clone members are united under a single gelatinous tunic by a network of anastomosed extracorporeal blood vessels. In these organisms, pairs of genetically distinct colonies can establish a natural chimerism upon physical contact by anastomosis of extracorporeal blood vessels between colonies. The ability to create a chimeric entity between colonies is determined by a single, highly polymorphic, fusion/histocompatibility locus (Fu/HC). Colonies that share at least one Fu/HC allele (mainly kin under in situ conditions) fuse vessels upon contact. A pair that does not share any Fu/HC allele does not, but instead has an inflammatory immune response that forms a permanent scar between colonies. Following fusion, cells transmigrate between colonies and, in some cases, replace the germline and/or the somatic tissues of the host. The replacement of host tissues by a donor genotype is pre-determined genetically and follows hierarchies of “winner strains” replacing “loser strains” tissues.

In both mammals and ascidians, natural creation of a chimera entity is mainly restricted to kin; long-term chimerism can be established by stem cells; and tolerance of donor tissues can be mediated by chimerism. While several studies and observations across different species, tissues and systems link chimerism to tolerance, its actual role in tolerance induction or maintenance is only understood in experimentally induced mammalian models. Here we review the chimerism phenomenon in mammals and ascidians, discuss the possible role of stem cells as mediators of chimerism and the possible role of cellular chimerism as mediators of tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KM, Nelson JL (2004) Microchimerism: An investigative frontier in autoimmunity and transplantation. JAMA 291:1127–1131

    Article  CAS  Google Scholar 

  • Anasetti C, Rybka W, Sullivan KM, Banaji M, Slichter SJ (1989) Graft-v-host disease is associated with autoimmune-like thrombocytopenia. Blood 73:1054–1058

    CAS  Google Scholar 

  • Anderson D, Billingham RE, Lampkin GH, Medawar PB (1951) The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity 5:379

    Article  Google Scholar 

  • Anderson DJ, Gage FH, Weissman IL (2001) Can stem cells cross lineage boundaries? Nature Medicine 7:393–395

    Article  CAS  Google Scholar 

  • Andrassy J, Kusaka S, Jankowska-Gan E, Torrealba JR, Haynes LD, Marthaler BR, Tam RC, Illigens BM, Anosova N, Benichou G, Burlingham WJ (2003) Tolerance to noninherited maternal MHC antigens in mice. J Immunol 171:5554–5561

    CAS  Google Scholar 

  • Armitage JO (1994) Bone marrow transplantation. N Engl J Med 330:827–838

    Article  CAS  Google Scholar 

  • Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338:1186–1191

    Article  CAS  Google Scholar 

  • Ash RC, Casper JT, Chitambar CR, Hansen R, Bunin N, Truitt RL, Lawton C, Murray K, Hunter J, Baxter-Lowe LA (1990) Successful allogeneic transplantation of T-cell-depleted bone marrow from closely HLA-matched unrelated donors. N Engl J Med 322:485–494

    CAS  Google Scholar 

  • Azumi K, Takahashi H, Miki Y, Fujie M, Usami T, Ishikawa H, Kitayama A, Satou Y, Ueno N, Satoh N (2003) Construction of a cDNA microarray derived from the ascidian ciona intestinalis. Zoolog Sci 20:1223–1229

    Article  CAS  Google Scholar 

  • Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM (1968) Bone-marrow transplantation in a patient with the wiskott-aldrich syndrome. Lancet 2:1364–1366

    Article  CAS  Google Scholar 

  • Ballarin L, Cima F, Floreani M, Sabbadin A (2002) Oxidative stress induces cytotoxicity during rejection reaction in the compound ascidian Botryllus schlosseri. Comp Biochem Physiol C Toxicol Pharmacol 133:411–418

    Article  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1995) Morula cells and histocompatibility in the colonial ascidian Botryllus schlosseri. Zool Sci 12:757–764

    Article  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1998) Phenoloxidase and cytotoxicity in the compound ascidian Botryllus schlosseri. Dev Comp Immunol 22:479–492

    Article  CAS  Google Scholar 

  • Bancroft FW (1903) Variation and fusion of colonies in compound ascidians. Proc Calif Acad Sci 3:137–186

    Google Scholar 

  • Barki Y, Gateño D, Graur D, Rinkevich B (2002) Soft coral natural chimerism: A window in ontogeny allows the creation of entities, compounding incongruous parts. Marine Ecology Progress Series 231:91–99

    Article  Google Scholar 

  • Barnes DW, Loutit JF, Micklem HS (1962) “Secondary disease” of radiation chimeras: A syndrome due to lymphoid aplasia. Ann NY Acad Sci 99:374–385

    Article  CAS  Google Scholar 

  • Barnes RD, Holliday J (1970) The morphological identity of maternal cells in newborn mice. Blood 36:480–489

    CAS  Google Scholar 

  • Ben-Shlomo R, Douek J, Rinkevich B (2001) Heterozygote deficiency and chimerism in remote populations of a colonial ascidian from New Zealand. Mar Ecol Prog Series 209:109–117

    Article  Google Scholar 

  • Ben-Shlomo R, Motro U, Paz G, Rinkevich B (2008) Pattern of sett lement and natural chimerism in the colonial uroc.hordate Botryllus schlosseri. Genetica 132:51–58

    Article  Google Scholar 

  • Ben-Shlomo R, Paz G, Rinkevich B (2006) Postglacial-period and recent invasions shape the population genetics of botryllid ascidians along European Atlantic coasts. Ecosystems 9:1118–1127

    Article  Google Scholar 

  • Bianchi DW (2007) Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg 42:12–18

    Article  Google Scholar 

  • Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W, Evans MI, Dukes KA, Sullivan LM, Klinger KW, Bischoff FZ, Hahn S, Johnson KL, Lewis D, Wapner RJ, de la Cruz F (2002) Fetal gender and aneuploidy detection using fetal cells in maternal blood: Analysis of NIFTY I data. National institute of child health and development fetal cell isolation study. Prenat Diagn 22:609–615

    Article  CAS  Google Scholar 

  • Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP (1997) PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 61:822–829

    Article  CAS  Google Scholar 

  • Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93:705–708

    Article  CAS  Google Scholar 

  • Billingham RE, Brent L (1956) Acquired tolerance of foreign cells in newborn animals. Proc R Soc Lond B Biol Sci 146:78–90

    Article  CAS  Google Scholar 

  • Billingham RE, Brent L, Brown JB, Medawar PB (1959) Time of onset and duration of transplantation immunity. Transplant Bull 6:410–414

    CAS  Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    Article  CAS  Google Scholar 

  • Billingham RE, Lampkin GH, Medawar PB, Williams HL (1952) Tolerance to homografts, twin diagnosis and the freemartin condition in cattle. Heredity 6:200–212

    Article  Google Scholar 

  • Billingham RE, Silvers WK (1959) Inbred animals and tissue transplantation immunity, with an index of some inbred strains other than mice. Transplant Bull 6:399–406

    CAS  Google Scholar 

  • Billingham RE, Silvers WK (1960) Studies on tolerance of the Y chromosome antigen in mice. J Immunol 85:14–26

    CAS  Google Scholar 

  • Boklage CE (1990) Survival probability of human conceptions from fertilization to term. Int J Fertil 35:75, 79–80, 81–94

    CAS  Google Scholar 

  • Boklage CE (2006) Embryogenesis of chimeras, twins and anterior midline asymmetries. Hum Reprod 21:579–591

    Article  Google Scholar 

  • Bordenave GR, Babinet C (1984) Tetraparental rabbits chimeric for their lymphoid system–I. allotype expression. Mol Immunol 21:353–361

    Article  CAS  Google Scholar 

  • Boyd HC, Weissman IL, Saito Y (1990) Morphologic and genetic verification that Monterey Botryllus and Woods Hole Botryllus are the same species. Biol Bull 178:239–250

    Article  Google Scholar 

  • Brent L (1997) The discovery of immunologic tolerance. Hum Immunol 52:75–81

    Article  CAS  Google Scholar 

  • Bromilow IM, Duguid J (1989) The liverpool chimaera. Vox Sang 57:147–149

    Article  CAS  Google Scholar 

  • Burnet FM (1971) “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232:230–235

    Article  CAS  Google Scholar 

  • Burnet FM (1973) Multiple polymorphism in relation to histocompatibility antigens. Nature 245:359–361

    Article  CAS  Google Scholar 

  • Burnet FM, Fenner F (1949) The production of antibodies, 2nd edn. Macmillan, Melbourne, London

    Google Scholar 

  • Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79:5337–5341

    Article  CAS  Google Scholar 

  • Buss LW, Grosberg RK (1990) Morphogenetic basis for phenotypic differences in Hydroid competitive behavior. Nature 343:63–66

    Article  Google Scholar 

  • Buss LW, Mcfadden CS, Keene DR (1984) Biology of Hydractiniid hydroids. 2. histocompatibility effector system competitive mechanisms mediated by nematocyst discharge. Biol Bull 167:139–158

    Article  Google Scholar 

  • Cadavid LF, Powell AE, Nicotra ML, Moreno M, Buss LW (2004) An invertebrate histocompatibility complex. Genetics 167:357–365

    Article  CAS  Google Scholar 

  • Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, Weissman IL, Contag CH (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci USA 101:221–226

    Article  CAS  Google Scholar 

  • Chadwick-Furman NE, Rinkevich B (1994) A complex allorecognition system in a reef-building coral: Delayed response, reversals and nontransitive hierarchies. Coral Reefs 13:57–63

    Article  Google Scholar 

  • Chadwick-Furman NE, Weissman IL (1995) Life history plasticity in chimaeras of the colonial ascidian Botryllus schlosseri. P Roy Soc B-Biol Sci 262:157–162

    Article  CAS  Google Scholar 

  • Cima F, Sabbadin A, Ballarin L (2004) Cellular aspects of allorecognition in the compound ascidian Botryllus schlosseri. Dev Comp Immunol 28:881–889

    Article  CAS  Google Scholar 

  • Cima F, Sabbadin A, Zaniolo G, Ballarin L (2006) Colony specificity and chemotaxis in the compound ascidian Botryllus schlosseri. Comp Biochem Physiol A Mol Integr Physiol 145:376–382

    Article  CAS  Google Scholar 

  • Claas FH, Gijbels Y, van der Velden-de Munck J, van Rood JJ (1988) Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 241:1815–1817

    Article  CAS  Google Scholar 

  • Claas FH, Gijbels Y, von Veen A, de Waal LP, D’Amaro J, Persijn GG, van Rood JJ (1989) Selection of cross-match negative HLA-A and/or -B mismatched donors for highly sensitized patients. Transplant Proc 21:665–666

    CAS  Google Scholar 

  • Colson YL, Shinde Patil VR, Ildstad ST (2007) Facilitating cells: Novel promoters of stem cell alloengraftment and donor-specific transplantation tolerance in the absence of GVHD. Crit Rev Oncol Hematol 61:26–43

    Article  Google Scholar 

  • Colson YL, Wren SM, Schuchert MJ, Patrene KD, Johnson PC, Boggs SS, Ildstad ST (1995a) A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major, minor, and hematopoietic histocompatibility barriers. J Immunol 155:4179–188

    CAS  Google Scholar 

  • Colson YL, Zadach K, Nalesnik M, Ildstad ST (1995b) Mixed allogeneic chimerism in the rat. donor-specific transplantation tolerance without chronic rejection for primarily vascularized cardiac allografts. Transplantation 60:971–980

    Article  CAS  Google Scholar 

  • Conley ME, Nowell PC, Henle G, Douglas SD (1984) XX T cells and XY B cells in two patients with severe combined immune deficiency. Clin Immunol Immunopathol 31:87–95

    Article  CAS  Google Scholar 

  • Cowan MJ, Neven B, Cavazanna-Calvo M, Fischer A, Puck J (2008) Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency Diseases. Biol Blood Marrow TR 14:73–76

    Article  Google Scholar 

  • Christner PJ, Jimenez SA (2004) Animal models of systemic sclerosis: Insights into systemic sclerosis pathogenesis and potential therapeutic approaches. Curr Opin Rheumatol 16:746–752

    Article  Google Scholar 

  • Davidson B, Swalla BJ (2002) A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response. Development 129:4739–4751

    Article  CAS  Google Scholar 

  • De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB, Mitchel K, Weissman IL (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–459

    Article  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM et al. (2002) The draft genome of ciona intestinalis: Insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  Google Scholar 

  • Dunsford I, Bowley CC, Hutchison AM, Thompson JS, Sanger R, Race RR (1953) A human blood-group chimera. Br Med J 2:80–81

    Article  CAS  Google Scholar 

  • Emery D, McCullagh P (1980a) Immunological reactivity between chimeric cattle twins. I. homograft reaction. Transplantation 29:4–9

    CAS  Google Scholar 

  • Emery D, McCullagh P (1980b) Immunological reactivity between chimeric cattle twins. II. normal lymphocyte transfer. Transplantation 29:10–16

    CAS  Google Scholar 

  • Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL (1999) Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 93:2033–2037

    CAS  Google Scholar 

  • Fagan MB, Weissman IL (1997) HSP70 genes and historecognition in botryllus schlosseri: Implications for MHC evolution. Hereditas 127:25–35

    Article  CAS  Google Scholar 

  • Foster RD, Ascher NL, McCalmont TH, Neipp M, Anthony JP, Mathes SJ (2001) Mixed allogeneic chimerism as a reliable model for composite tissue allograft tolerance induction across major and minor histocompatibility barriers. Transplantation 72:791–797

    Article  CAS  Google Scholar 

  • Foster RD, Fan L, Neipp M, Kaufman C, McCalmont T, Ascher N, Ildstad S, Anthony JP, Niepp M (1998) Donor-specific tolerance induction in composite tissue allografts. Am J Surg 176:418–421

    Article  CAS  Google Scholar 

  • Frank U, Oren U, Loya Y, Rinkevich B (1997) Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, four months post metamorphosis. Proc Royal Soc Lond B 264:99–104

    Article  Google Scholar 

  • Flomenberg N, Dupont B, O’Reilly RJ, Hayward A, Pollack MS (1983) The use of T cell culture techniques to establish the presence of an intrauterine-derived maternal T cell graft in a patient with severe combined immunodeficiency (SCID). Transplantation 36:733–735

    Article  CAS  Google Scholar 

  • Gaillard MC, Ouvre E, Liegeois A, Lewin D (1978) The concentration of fetal cells in maternal haematopoietic organs during pregnancy. An experimental study in mice (author’s transl). J Gynecol Obstet Biol Reprod (Paris) 7:1043–1050

    CAS  Google Scholar 

  • Gale RP, Reisner Y (1986) Graft rejection and graft-versus-host disease: Mirror images. Lancet 1:1468–1470

    CAS  Google Scholar 

  • Gandy KL, Domen J, Aguila H, Weissman IL (1999) CD8+TCR+ and CD8+TCR- cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity 11:579–590

    Article  CAS  Google Scholar 

  • Gandy KL, Weissman IL (1998) Tolerance of allogeneic heart grafts in mice simultaneously reconstituted with purified allogeneic hematopoietic stem cells. Transplantation 65:295–304

    Article  CAS  Google Scholar 

  • Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2:1366–1369

    Article  CAS  Google Scholar 

  • Gengozian N, Batson JS, Eide P (1964) Hematologic and cytogenetic evidence for hematopoietic chimerism in the marmoset, Tamarinus nigricollis. Cytogenetics 10:384–393

    Article  CAS  Google Scholar 

  • Giard A (1872) Recherches sur les ascidies composees ou synascidies. Arch Zool Exp Gen 1:501–704

    Google Scholar 

  • Green AJ, Barton DE, Jeniks P, Pearson J, Yates JRW (1994) Chimerism shown by cytogenetics and DNA polymorphism analysis. J Med Genet 31:816–817

    Article  CAS  Google Scholar 

  • Grosberg RK (1987) Limited dispersal and proximity dependent mating success in Botryllus schlosseri. Evolution 41:372–384

    Article  Google Scholar 

  • Grosberg RK (1988) The evolution of allorecognition specificity in colonial invertebrates. Quarterly Rev Biol 63:377–412

    Article  Google Scholar 

  • Grosberg RK, Quinn JF (1986) The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322:456–459

    Article  Google Scholar 

  • Haig D (1999) What is a marmoset? Am J Primatol 49:285–296

    Article  CAS  Google Scholar 

  • Hamada H, Arinami T, Kubo T, Hamaguchi H, Iwasaki H (1993) Fetal nucleated cells in maternal peripheral blood: Frequency and relationship to gestational age. Hum Genet 91:427–432

    Article  CAS  Google Scholar 

  • Hampton SH (1973) Germ cell chimerism in male marmosets. Am J Phys Anthropol 38:265–268

    Article  CAS  Google Scholar 

  • Hasek M (1953a) Parabiosis of birds during their embryonic development. Chekhoslovatskaia Biol 2:29–31

    CAS  Google Scholar 

  • Hasek M (1953b) Vegetative hybrization of animals by means of junction of the blood circulation during embryonic development. Chekhoslovatskaia Biol 2:267–282

    CAS  Google Scholar 

  • Hasek M, Haskova V (1958) A contribution to the significance of individual antigenic specificity in homografting. Transplan Bull 5:69

    Google Scholar 

  • Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM (1979) Fetal cells in the blood of pregnant women: Detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA 76:1453–1455

    Article  CAS  Google Scholar 

  • Heslop B, Nisbet NW (1962) Split tolerance in inbred rats. Transplan Bull 29:471–473

    Google Scholar 

  • Hirose E, Saito Y, Watanabe H (1988) Anew type of the manifestation of the colony specificity in the compound ascidian, Botrylloides violaceus Oka. Biol Bull 175:240–245

    Article  Google Scholar 

  • Hirose E, Saito Y, Watanabe H (1990) Allogeneic rejection induced by the cut surface contact in the compound ascidian, Botrylloides simodensis. Invertebr Dev Reprod 17:159–164

    Google Scholar 

  • Hughes RN (1989) A functional biology of clonal animals. Chapman & Hall, London and New York

    Google Scholar 

  • Hume DM, Jackson BT, Zukoski CF, Lee HM, Kauffman HM, Egdahl RH (1960) The homotransplantation of kidneys and of fetal liver and spleen after total body irradiation. Ann Surg 152:354–373

    CAS  Google Scholar 

  • Ichinohe T, Teshima T, Matsuoka K, Maruya E, Saji H (2005) Fetal-maternal microchimerism: Impact on hematopoietic stem cell transplantation. Curr Opin Immunol 17:546–552

    Article  CAS  Google Scholar 

  • Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170

    Article  CAS  Google Scholar 

  • Ilan M, Loya Y (1990) Ontogenetic variation in sponge histocompatibility responses. Biol Bull 179:279–286

    Article  Google Scholar 

  • Imaizumi M, Pritsker A, Unger P, Davies TF (2002) Intrthyroidal fetal microchimerism in pregnancy and postpartum. Endocrinology 143:247–253

    Article  CAS  Google Scholar 

  • Iwaki Y, Starzl TE, Yagihashi A, Taniwaki S, Abu-Elmagd K, Tzakis A, Fung J, Todo S (1991) Replacement of donor lymphoid tissue in small-bowel transplants. Lancet 337:818–819

    Article  CAS  Google Scholar 

  • Johnson KL, Samura O, Nelson JL, McDonnell MdWM, Bianchi DW (2002) Significant fetal cell microchimerism in a nontransfused woman with hepatitis C: Evidence of long-term survival and expansion. Hepatology 36:1295–1297

    Article  Google Scholar 

  • Kaplan J, Land S (2005) Influence of maternal-fetal histocompatibility and MHC zygosity on maternal microchimerism. J Immunol 174:7123–7128

    CAS  Google Scholar 

  • Karakashian S, Milkman R (1967) Colony fusion compatibility types in Botryllus schlosseri. Biol Bull 133:473

    Google Scholar 

  • Kashiwagi N, Porter KA, Penn I, Brettschneider L, Starzl TE (1969) Studies of homograft sex and of gamma globulin phenotypes after orthotopic homotransplantation of the human liver. Surg Forum 20:374–376

    CAS  Google Scholar 

  • Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST (1994) Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 84:2436–2446

    CAS  Google Scholar 

  • Kaufman J (2002) The origins of the adaptive immune system: Whatever next? Nat Immunol 3:1124–1125

    Article  CAS  Google Scholar 

  • Khalturin K, Becker M, Rinkevich B, Bosch TC (2003) Urochordates and the origin of natural killer cells: Identification of a CD94/NKR-P1-related receptor in blood cells of botryllus. Proc Natl Acad Sci USA 100:622–627

    Article  CAS  Google Scholar 

  • Khosrotehrani K, Johnson KL, Guegan S, Stroh H, Bianchi DW (2005) Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol 66:1–12

    Article  CAS  Google Scholar 

  • Klein J (1989) Are invertebrates capable of anticipatory immune responses? Scand J Immunol 29:499–505

    Article  CAS  Google Scholar 

  • Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, Regauer S, Kleiber M, Hoang-Vu C (2006) Fetal microchimerism in Hashimito’s thyroiditid: A quantitative approach. Eur J Endocrinol 154:237–241

    Article  CAS  Google Scholar 

  • Koopmans M, Kremer Hovinga IC, Baelde HJ, Fernandes RJ, de Heer E, Bruijn JA, Bajema IM (2005) Chimerism in kidneys, livers and hearts of normal women: Implications for transplantation studies. Am J Transplant 5:1495–1502

    Article  Google Scholar 

  • Korngold B, Sprent J (1978) Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J Exp Med 148:1687–1698

    Article  CAS  Google Scholar 

  • Laird DJ, De Tomaso AW, Cooper MD, Weissman IL (2000) 50 million years of chordate evolution: Seeking the origins of adaptive immunity. Proc Natl Acad Sci USA 97:6924–6926

    Article  CAS  Google Scholar 

  • Laird DJ, De Tomaso AW, Weissman IL (2005) Stem cells are units of natural selection in a colonial ascidian. Cell 123:1351–1360

    Article  CAS  Google Scholar 

  • Lambert NC, Evans PC, Hashizumi TL, Maloney S, Gooley T, Furst DE, Nelson JL (2000) Cutting edge: Persistent fetal microchimerism in T lymphocytes is associated with HLA-DQA10501: Implications in autoimmunity. J Immunol 164:5545–5548

    CAS  Google Scholar 

  • Lauzon RJ, Ishizuka KJ, Weissman IL (1992) A cyclical, developmentally-regulated death phenomenon in a colonial urochordate. Dev Dyn 194:71–83

    CAS  Google Scholar 

  • Lauzon RJ, Patton CW, Weissman IL (1993) A morphological and immunohistochemical study of programmed cell death in Botryllus schlosseri (tunicata, ascidiacea). Cell Tissue Res 272:115–127

    Article  CAS  Google Scholar 

  • Le Deist F, Raffoux C, Griscelli C, Fischer A (1987) Graft vs graft reaction resulting in the elimination of maternal cells in a SCID patient with maternofetal GVHd after an HLA identical bone marrow transplantation. J Immunol 138:423–427

    Google Scholar 

  • Li H, Colson YL, Ildstad ST (1995) Mixed allogeneic chimerism achieved by lethal and nonlethal conditioning approaches induces donor-specific tolerance to simultaneous islet allografts. Transplantation 60:523–529

    CAS  Google Scholar 

  • Liegeois A (1983) In Edelman P, Sureau C (eds) Immunologie de le reproduction humanie, Edition Boz. Paris, pp 99–100

    Google Scholar 

  • Liegeois A, Gaillard MC, Ouvre E (1981) Micro-chimerism in pregnant mice. Transplant Proceed 13:1250–1252

    CAS  Google Scholar 

  • Lillie FR (1916) The theory of the free-martin. Science 43:611–613

    Article  CAS  Google Scholar 

  • Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny: New perspectives. Nat Rev Immunol 5:866–879

    Article  CAS  Google Scholar 

  • Litman GW, Dishaw LJ, Cannon JP, Haire RN, Rast JP (2007) Alternative mechanisms of immune receptor diversity. Curr Opin Immunol 19:526–534

    Article  CAS  Google Scholar 

  • Lo ES, Lo YM, Hjelm NM, Thilaganathan B (1998) Transfer of nucleated maternal cells into fetal circulation during the second trimester of pregnancy. Br J Haematol 100:605–606

    Article  CAS  Google Scholar 

  • Lo YM, Lo ES, Watson N, Noakes L, Sargent IL, Thilaganathan B, Wainscoat JS (1996) Two-way cell traffic between mother and fetus: Biologic and clinical implications. Blood 88:4390–4395

    CAS  Google Scholar 

  • Lo YM, Patel P, Wainscoat JS, Sampietro M, Gillmer MD, Fleming KA (1989) Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet 2:1363–1365

    Article  CAS  Google Scholar 

  • Loubiere LS, Lambert NC, Flinn LJ, Erickson TD, Yan Z, Guthrie KA, Vickers KT, Nelson JL (2006) Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab Invest 86:1185–1192

    CAS  Google Scholar 

  • Lubaroff DM, Silvers WK (1973) Importance of chimerism in maintaining tolerance of skin allografts in mice. J Immunol 111:65–71

    CAS  Google Scholar 

  • Lustgraaf EC, Fuson RB, Eichwald EJ (1960) Sex tolerance and split tolerance. Transplant Bull 26:145–150

    CAS  Google Scholar 

  • Main JM, Prehn RT (1955) Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst 15:1023–1029

    CAS  Google Scholar 

  • Mannick JA, Lochte LH Jr, Ashley CA, Thomas ED, Ferrebee JW (1959) A functioning kidney homotransplant in the dog. Surgery 46:821–828

    CAS  Google Scholar 

  • Maraninchi D, Gluckman E, Blaise D, Guyotat D, Rio B, Pico JL, Leblond V, Michallet M, Dreyfus F, Ifrah N (1987) Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet 2:175–178

    Article  CAS  Google Scholar 

  • Marleau AM, Greenwood JD, Wei Q, Singh B, Croy BA (2003) Chimerism of murine fetal bone marrow by maternal cells occurs in late gestation and persists into adulthood. Lab Invest 83:673–681

    Google Scholar 

  • Martin PJ, Hansen JA, Storb R, Thomas ED (1987) Human marrow transplantation: An immunological perspective. Adv Immunol 40:379–438

    Article  CAS  Google Scholar 

  • Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M (1963) Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. (control of the secondary syndrome. specific tolerance due to the chimerism). Br Med J 2:1633–1635

    Article  CAS  Google Scholar 

  • Mayr WR, Pausch V, Schnedl W (1979) Human chimaera detectable only by investigation of her progeny. Nature 277:210–211

    Article  CAS  Google Scholar 

  • Mintz B, Palm J (1969) Gene control of hematopoiesis. I. erythrocyte mosaicism and permanent immunological tolerance in allophenic mice. J Exp Med 129:1013–1027

    Article  CAS  Google Scholar 

  • Mitchison NA (1959) Blood transfusion in fowl: An example of immunological tolerance requiring the persistence of antigen. Bull Soc Int Chir 18:257–273

    CAS  Google Scholar 

  • Mitchison NA (1961) Immunological tolerance and immunological paralysis. Br Med Bull 17:102–106

    CAS  Google Scholar 

  • Mitsuyasu RT, Champlin RE, Gale RP, Ho WG, Lenarsky C, Winston D, Selch M, Elashoff R, Giorgi JV, Wells J (1986) Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double-blind trial. Ann Intern Med 105:20–26

    CAS  Google Scholar 

  • Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee TH, Nixon DF, McCune JM (2008) Maternal alloantigens promote the development of tolerogenic fetal regulatory T Cells in Utero. Science 322:1562–1565

    Google Scholar 

  • Monaco AP (2003) Chimerism in organ transplantation: Conflicting experiments and clinical observations. Transplantation 75:13S–16S

    Article  Google Scholar 

  • Mukai H (1967) Experimental alteration of fusibility in compound ascidians. Sci Rep Tokyo Kyoiku Daigaku 13B:51–73

    Google Scholar 

  • Mukai H, Watanabe H (1975) Distribution of fusion incompatibility types in natural populations of the compound ascidian Botryllus primigenus. Proc Jpn Acad 51:44–47

    Google Scholar 

  • Muller AW (1964) Experimentelle Untersuchungen uber Stockentwicklung, pelypendifferenzierung und Sexualchimaren bei Hydractinia echinata. Wilhem Roux’ Arch 155:182–268

    Google Scholar 

  • Muller WE, Pancer Z, Rinkevich B (1994) Molecular cloning and localization of a novel serine protease from the colonial tunicate Botryllus schlosseri. Mol Mar Biol Biotechnol 3:70–77

    CAS  Google Scholar 

  • Murase N, Demetris AJ, Woo J, Furuya T, Nalesnik M, Tanabe M, Todo S, Starzl TE (1991) Lymphocyte traffic and graft-versus-host disease after fully allogeneic small bowel transplantation. Transplant Proc 23:3246–3247

    CAS  Google Scholar 

  • Murray JE, Merrill JP, Dammin GJ, B. DJ, Jr, Walter CW, Brooke MS, Wilson RE (1960) Study on transplantation immunity after total body irradiation: Clinical and experimental investigation. Surgery 48:272–284

    CAS  Google Scholar 

  • Nelson J (2001) HLA relationships of pregnancy, microchimerism and autoimmune disease. J Reprod Immunol 52:77–84

    Article  CAS  Google Scholar 

  • Nelson JL (1996) Maternal-fetal immunology and autoimmune disease: Is some autoimmune disease auto-alloimmune or allo-autoimmune? Arthritis Rheum 39:191–194

    Article  CAS  Google Scholar 

  • Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, Bean MA, Ober C, Bianchi DW (1998) Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351:559–562

    Article  CAS  Google Scholar 

  • Neven B, Cavazanna-Calvo M, Fischer A (2008) Late Immunologic and clinical outcomes for children with SCID. Biol Blood Marrow TR 14:76–78

    CAS  Google Scholar 

  • Nonaka M, Miyazawa S (2002) Evolution of the initiating enzymes of the complement system. Genome Biol 3:REVIEWS1001

    Google Scholar 

  • Nyholm SV, Passegue E, Ludington WB, Voskoboynik A, Mitchel K, Weissman IL, De Tomaso AW (2006) Fester, A candidate allorecognition receptor from a primitive chordate. Immunity 25:163–173

    Article  CAS  Google Scholar 

  • O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182

    Article  Google Scholar 

  • O’Donoghue K, Fisk NM (2004) Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18:853–875

    Article  Google Scholar 

  • Oka H (1970) Colony specificity in compound ascidians. The genetic control of fusibility. In: Yukawa H (ed) Profiles of Japanese Science and Scientists. Kodansha, Tokyo

    Google Scholar 

  • Oka H, Watanabe H (1957) Colony specificity in compound ascidians as tested by fusion experiments (a preliminary report). Proc Jpn Acad 33:657–659

    Google Scholar 

  • Oka H, Watanabe H (1960) Problems of colony specificity in compound ascidians. Bull Mar Biol Stat Asamushi 10:153–155

    Google Scholar 

  • Oka H, Watanabe H (1967) Problems of colony specificity, with special reference to the fusibility of ascidians. Kagaku 37:307–313

    Google Scholar 

  • Oosterwijk JC, Mesker WE, Ouwerkerk-van Velzen MC, Knepfle CF, Wiesmeijer KC, Beverstock GC, van Ommen GJ, Kanhai HH, Tanke HJ (1998) Fetal cell detection in maternal blood: A study in 236 samples using erythroblast morphology, DAB and HbF staining, and FISH analysis. Cytometry 32:178–185

    Article  CAS  Google Scholar 

  • Opelz G, Sengar DP, Mickey MR, Terasaki PI (1973) Effect of blood transfusions on subsequent kidney transplants. Transplant Proc 5:253–259

    CAS  Google Scholar 

  • O’Reilly RJ (1983) Allogeneic bone marrow transplantation: Current status and future directions. Blood 62:941–946

    Google Scholar 

  • Oren M, Douek J, Fishelson Z, Rinkevich B (2007) Identification of immune-relevant genes in histoincompatible rejecting colonies of the tunicate Botryllus schlosseri. Dev Comp Immunol 31:889–902

    Article  CAS  Google Scholar 

  • Owen RD (1945) Immunogenetic consequences of vascular anastomoses between bovin twins. Science 102:400–401

    Article  CAS  Google Scholar 

  • Owen RD, Wood HR, Foord AG, Sturgeon P, Baldwin LG (1954) Evidence for actively tolerance to Rh antigens. Proc Natl Acad Sci USA 40:420–424

    Article  CAS  Google Scholar 

  • Pancer Z, Diehl-Seifert B, Rinkevich B, Muller WE (1997) A novel tunicate (botryllus schlosseri) putative C-type lectin features an immunoglobulin domain. DNA Cell Biol 16:801–806

    CAS  Google Scholar 

  • Pancer Z, Gershon H, Rinkevich B (1993) cDNA cloning of a putative protochordate FK506-binding protein. Biochem Biophys Res Commun 197:973–977

    Article  CAS  Google Scholar 

  • Pancer Z, Gershon H, Rinkevich B (1995) coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate Botryllus schlosseri. Biol Bull 189:106–112

    Article  Google Scholar 

  • Pancer Z, Cooper EL, Muller WE (1996a) A tunicate (Botryllus schlosseri) cDNA reveals similarity to vertebrate antigen receptors. Immunogenetics 45:69–72

    Article  CAS  Google Scholar 

  • Pancer Z, Leuck J, Rinkevich B, Steffen R, Muller I, Muller WE (1996b) Molecular cloning and sequence analysis of two cDNAs coding for putative anionic trypsinogens from the colonial urochordate Botryllus schlosseri (ascidiacea). Mol Mar Biol Biotechnol 5:326–333

    CAS  Google Scholar 

  • Pancer Z, Scheffer U, Muller I, Muller WE (1996c) Cloning of sponge (geodia cydonium) and tunicate (botryllus schlosseri) proteasome subunit epsilon (PRCE): Implications about the vertebrate MHC-encoded homologue LMP7 (PRCC). Biochem Biophys Res Commun 228:406–410

    Article  CAS  Google Scholar 

  • Paz G, Douek J, Mo CQ, Goren M, Rinkevich B (2003) Genetic structure of Botryllus schlosseri (Tunicata) populations from the Mediterranean coast of Israel. Mar Ecol Prog Ser 250:163–174

    Article  Google Scholar 

  • Persijn GG, Cohen B, Lansbergen Q, van Rood JJ (1979) Retrospective and prospective studies on the effect of blood transfusions in renal transplantation in the netherlands. Transplantation 28:396–401

    Article  CAS  Google Scholar 

  • Piotrowski P, Croy BA (1996) Maternal cells are widely distributed in murine fetuses in utero. Biol Reprod 54:1103–1110

    Article  CAS  Google Scholar 

  • Pollack SM, Kirkpatrick D, Kapoor N, Dupont B, O’Reilly RJ (1982) Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Eng J Med 307:662–666

    CAS  Google Scholar 

  • Prabhune KA, Gorantla VS, Maldonado C, Perez-Abadia G, Barker JH, Ildstad ST (2000) Mixed allogeneic chimerism and tolerance to composite tissue allografts. Microsurgery 20:441–447

    Article  CAS  Google Scholar 

  • Randhawa PS, Starzl T, Ramos HC, Nalesnik MA, Demetris J (1994) Allografts surviving for 26 to 29 years following living-related kidney transplantation: Analysis by light microscopy, in situ hybridization for the Y chromosome, and anti-HLA antibodies. Am J Kidney Dis 24:72–77

    CAS  Google Scholar 

  • Repas-Humpe LM, Humpe A, Lynen R, Glock B, Dauber EM, Simson G, Mayr WR, Kohler M, Eber S (1999) A dispermic chimerism in a 2-year-old caucasian boy. Ann Hematol 78:431–434

    Article  CAS  Google Scholar 

  • Rinkevich B (1993) Immunological resorption in Botryllus schlosseri (Tunicata) chimeras is characterized by multilevel hierarchical organization of histocompatibility alleles. A speculative endeavor. Biol Bull 184:342–345

    Google Scholar 

  • Rinkevich B (2005) Rejection patterns in botryllid ascidian immunity: The first tier of allorecognition. Canad J Zool 83:101–121

    Article  CAS  Google Scholar 

  • Rinkevich B, Lilker-Levav T, Goren M (1994b) Allorecognition/Xenorecognition responses in Botrylloides subpopulations from the Mediterranean coast of Israel. Jour Exp Zool 270:302–313

    Article  Google Scholar 

  • Rinkevich B, Porat R, Goren M (1995) Allorecognition elements on Urochordate histocompatibility locus indicate unprecedented extensive polymorphism. Proc Biol Sci 259:319–324

    Article  Google Scholar 

  • Rinkevich B, Shapira M (1999) Multi-partner urochordate shimeras outperform two-partner chimerical entities. Oikos 87:315–320

    Article  Google Scholar 

  • Rinkevich B, Tartakover S, Gershon H (1998) Contribution of morula cells to allogeneic responses in the colonial urochordate Botryllus schlosseri. Mar Biol 131:227–236

    Article  Google Scholar 

  • Rinkevich B, Weissman IL (1987) Chimeras in colonial invertebrates- a synergidtic symbiosis or somatic and germ cell parasitism. Symbiosis 4:117–134

    Google Scholar 

  • Rinkevich B, Weissman IL (1992a) Allogeneic resorption in colonial protochordates: Consequences of nonself recognition. Dev Comp Immunol 16:275–286

    Article  CAS  Google Scholar 

  • Rinkevich B, Weissman IL (1992b) Incidents of rejection and indifference in Fu/HC incompatible protochordate colonies. J Exp Zool 263:105–111

    Article  CAS  Google Scholar 

  • Rinkevich B, Weissman IL, Shapira M (1994a) Alloimmune hierarchies and stress-induced reversals in the resorption of chimeric protochordate colonies. Proc R Soc Lon Ser B Biol Sci 258:215–220

    Article  Google Scholar 

  • Rinkevich B, Yankelevich I (2004) Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 207:3531–3536

    Article  Google Scholar 

  • Rinkevich Y, Douek J, Haber O, Rinkevich B, Reshef R (2007) Urochordate whole body regeneration inaugurates a diverse innate immune signaling profile. Dev Biol 312:131–146

    Article  CAS  Google Scholar 

  • Sabbadin A (1962) Le basi geneticha della capacita di fusion fra colonies in Botryllus schlosseri (Ascidiacea). Rend Accad Naz Lincei Ser 32:1031–1035

    Google Scholar 

  • Sabbadin A (1982) Formal genetics of ascidians. Am Zool 22:765

    Google Scholar 

  • Sabbadin A, Astorri C (1988) Chimeras and histocompatibility in the colonial ascidian botryllus schlosseri. Dev Comp Immunol 12:737–747

    Article  CAS  Google Scholar 

  • Sabbadin A, Zaniolo G (1979) Sexual differentiation and germ cell transfer in the colonial ascidian Botryllus schlosseri. J Exp Zool 207:289–304

    Article  Google Scholar 

  • Sabbadin A, Zaniolo G, Ballarin L (1992) Genetic and cytological aspects of histocompatibility in ascidians. Boll Zool 59:167–173

    Google Scholar 

  • Saito Y, Hirose E, Watanabe H (1994) Allorecognition in compound ascidians. Int J Dev Biol 38:237–247

    CAS  Google Scholar 

  • Saito Y, Watanabe H (1982) Colony specificity in the compound ascidian Botryllus scalaris. Proc Jpn Acad 58B:105–108

    Article  Google Scholar 

  • Saito Y, Watanabe H (1984) Partial biochemical characterization of humoral factors involved in the nonfusion reaction of a botryllid ascidian, Botrylloides simodensis. Zool Sci 1:229–235

    CAS  Google Scholar 

  • Scofield VL, Schlumpberger JM, Nagashima LS (1983) Morphology and genetics of rejection reactions between oozooids from the tunicate Botryllus schlosseri. Biol Bull 165:733–744

    Article  Google Scholar 

  • Scofield VL, Schlumpberger JM, West LA, Weissman IL (1982) Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295:499–502

    Article  CAS  Google Scholar 

  • Sharabi Y, Abraham VS, Sykes M, Sachs DH (1992) Mixed allogeneic chimeras prepared by a non-myeloablative regimen: Requirement for chimerism to maintain tolerance. Bone Marrow Transplant 9:191–197

    CAS  Google Scholar 

  • Shizuru JA, Jerabek L, Edwards CT, Weissman IL (1996) Transplantation of purified hematopoietic stem cells: Requirements for overcoming the barriers of allogeneic engraftment. Biol Blood Marrow Transplant 2:3–14

    CAS  Google Scholar 

  • Shizuru JA, Weissman IL, Kernoff R, Masek M, Scheffold YC (2000) Purified hematopoietic stem cell grafts induce tolerance to alloantigens and can mediate positive and negative T cell selection. Proc Natl Acad Sci USA 97:9555–9560

    Article  CAS  Google Scholar 

  • Simonsen M (1956) Actively acquired tolerance to heterologous antigens; immunological consequences of transfusing chicken embryos with human blood. Acta Pathol Microbiol Scand 39:21–34

    CAS  Google Scholar 

  • Smith LG, Weissman IL, Heimfeld S (1991) Clonal analysis of hematopoietic stem cell differentiation in vivo. Proc Natl Acad Sci USA 88:2788–2792

    Article  CAS  Google Scholar 

  • Sommerfeldt AD, Bishop JDD (1999) Random amplified polymorphic DNA (RAPD) analysis reveals extensive natural chimerism in a marine protochordate. Mol Ecol 8:885–890

    Article  CAS  Google Scholar 

  • Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW (2001) Microchimerism of presumed fetal origin in thyroid specimens from women: A case-control study. Lancet 358:2034–2038

    Article  CAS  Google Scholar 

  • Starzl TE (2004) Chimerism and tolerance in transplantation. Proc Natl Acad Sci USA 101(Suppl 2):14607–14614

    Article  CAS  Google Scholar 

  • Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M (1992) Cell migration, chimerism, and graft acceptance. Lancet 339:1579–1582

    Article  CAS  Google Scholar 

  • Starzl TE, Demetris AJ, Trucco M, Murase N, Ricordi C, Ildstad S, Ramos H, Todo S, Tzakis A, Fung JJ (1993a) Cell migration and chimerism after whole-organ transplantation: The basis of graft acceptance. Hepatology 17:1127–1152

    Article  CAS  Google Scholar 

  • Starzl TE, Demetris AJ, Trucco M, Zeevi A, Ramos H, Terasaki P, Rudert WA, Kocova M, Ricordi C, Ildstad S (1993b) Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation 55:1272–1277

    Article  CAS  Google Scholar 

  • Starzl TE, Murase N, Thomson A, Demetris AJ (1996) Liver transplants contribute to their own success. Nat Med 2:163–165

    Article  CAS  Google Scholar 

  • Stone WH, Cragle RG, Johnson DF, Bacon JA, Bendel S, Korda N (1971) Long-term observations of skin grafts between chimeric cattle twins. Transplantation 12:421–428

    Article  CAS  Google Scholar 

  • Stone WH, Cragle RG, Swanson EW, Brown DG (1965) Skin grafts: Delayed rejection between pairs of cattle twins showing erythrocyte chimerism. Science 148:1335–1336

    Article  CAS  Google Scholar 

  • Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA 96:9148–9153

    Article  CAS  Google Scholar 

  • Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: Possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 93:15254–15259

    Article  CAS  Google Scholar 

  • Strain L, Dean JC, Hamilton MP, Bonthron DT (1998) A true hermaphrodite chimera resulting from embryo amalgamation after in vitro fertilization. N Engl J Med 338:166–169

    Article  CAS  Google Scholar 

  • Strain L, Warner JP, Johnston T, Bonthron DT (1995) A human parthenogenetic chimaera. Nat Genet 11:164–169

    Article  CAS  Google Scholar 

  • Suda T, Thompson LF, O’Connor RD, Bastian JF (1984) Phenotype and function of engrafted maternal T cells in patients with severe combined immunodeficiency. J Immunol 133:2513–2517

    Google Scholar 

  • Sumantri C, Boediono A, Ooe M, Saha S, Suzuki T (1997) Fertility of sperm from a tetraparental chimeric bull. Anim Reprod Sci 46:35–45

    Article  CAS  Google Scholar 

  • Sybert VP (1994) Hypomelanosis of ito: A description, not a diagnosis. J Invest Dermatol 103:141S–143S

    Article  CAS  Google Scholar 

  • Taieb A, Clavijo-Alvarez JA, Hamad GG, Lee WP (2007) Immunologic approaches to composite tissue allograft. J Hand Surg [Am] 32:1072–1085

    Article  Google Scholar 

  • Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS (2005) Fetal microchimerism in the maternal mouse brain: A novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 23:1443–1452

    Article  CAS  Google Scholar 

  • Tanaka K, Watanabe H (1973) Allogeneic inhibition in a compound ascidian, Botryllus primigenus oka. I. Processes and features of nonfusion reaction. Cell Immunol 7:410–426

    Article  CAS  Google Scholar 

  • Taneda Y (1985) Simultaneous occurrence of fusion and nonfusion reaction in two colonies in contact of the compound ascidian Botryllus priminegus. Dev Comp Immunol 9:371

    Article  CAS  Google Scholar 

  • Tiercy JM (2002) Molecular basis of HLA polymorphism: Implications in clinical transplantation. Transpl Immunol 9:173–180

    Article  CAS  Google Scholar 

  • Tippett P (1983) Blood group chimeras. A review. Vox Sang 44:333–359

    Article  CAS  Google Scholar 

  • Trentin JJ (1956) Mortality and skin transplantability in x-irradiated mice receiving isologous, homologous or heterologous bone marrow. Proc Soc Exp Biol Med 92:688–693

    CAS  Google Scholar 

  • Troeger C, Zhong XY, Burgemeister R, Minderer S, Tercanli S, Holzgreve W, Hahn S (1999) Approximately half of the erythroblasts in maternal blood are of fetal origin. Mol Hum Reprod 5:1162–1165

    Article  CAS  Google Scholar 

  • Tucker EM, Dain AR, Moor RM (1978) Sex chromosome chimaerism and the transmission of blood group genes by tetraparental rams. J Reprod Fertil 54:77–83

    Article  CAS  Google Scholar 

  • Tuffrey M, Bishun NP, Barnes RD (1969) Porosity of the mouse placenta to maternal cells. Nature 221:1029–1030

    Article  CAS  Google Scholar 

  • Tyan ML (1973) Modification of severe graft-versus-host disease with antisera to the (theta) antigen or to whole serum. Transplantation 15:601–604

    Article  CAS  Google Scholar 

  • Uehara S, Nata M, Nagae M, Sagisaka K, Okamura K, Yajima A (1995) Molecular biologic analyses of tetragametic chimerism in a true hermaphrodite with 46,XX/46,XY. Fertil Steril 63:189–192

    CAS  Google Scholar 

  • Uphoff DE (1957) Genetic factors influencing irradiation protection by bone marrow. I. the F1 hybrid effect. J Natl Cancer Inst 19:123–130

    CAS  Google Scholar 

  • Vaidya S, Mamiok R, Daeschner CW 3rd, Williams J, Ruth J, Goldblum RM (1991) Supression of graft versus host reaction in severe combined immunodeficiency with maternal-fetal T cell engraftment. Am J Pediatr Hematol Oncol 13:172–175

    Article  CAS  Google Scholar 

  • Vallera DA, Blazar BR (1989) T cell depletion for graft-versus-host-disease prophylaxis. A perspective on engraftment in mice and humans. Transplantation 47:751–60

    Article  CAS  Google Scholar 

  • van den Boogaardt DEM, van Rood JJ, Roelen DL, Claas FH (2006) The influence of inherited and noninherited parental antigens on outcome after transplantation. Transpl Int 19:360–371

    Article  CAS  Google Scholar 

  • van Dijk BA, Boomsma DI, de Man AJ (1996) Blood group chimerism in human multiple births is not rare. Am J Med Genet 61:264–268

    Article  Google Scholar 

  • Verp MS, Harrison HH, Ober C, Oliveri D, Amarose AP, Lindgren V, Talerman A (1992) Chimerism as the etiology of a 46,XX/46,XY fertile true hermaphrodite. Fertil Steril 57: 346–349

    CAS  Google Scholar 

  • Voskoboynik A, Soen Y, Rinkevich Y, Ueno H, Rosner A, Reshef R, Ishizuka KJ, Palmeri KJ, Moiseeva E, Rinkevich B, Weissman IL (2008) Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 3:456–464

    Google Scholar 

  • Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648

    Article  CAS  Google Scholar 

  • Walknowska J, Conte FA, Grumbach MM (1969) Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet 1:1119–1122

    Article  CAS  Google Scholar 

  • Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, Imai E, Hori M (2004) Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun 325:961–967

    Article  CAS  Google Scholar 

  • Watanabe H, Taneda Y (1982) Self or non-self recognition in compound ascidians. Am Zool 22:775–782

    Google Scholar 

  • Watkins DI, Chen ZW, Hughes AL, Hodi FS, Letvin NL (1990) Genetically distinct cell populations in naturally occurring bone marrow-chimeric primates express similar MHC class I gene products. J Immunol 144:3726–3735

    CAS  Google Scholar 

  • Watkins WM, Yates AD, Greenwell P, Bird GW, Gibson M, Roy TC, Wingham J, Loeb W (1981) A human dispermic chimaera first suspected from analyses of the blood group gene-specified glycosyltransferases. J Immunogenet 8:113–128

    Article  CAS  Google Scholar 

  • Weissman IL (1963) Tissue transplantation Specific “Conditioning” of the host. In: Eichwald EJ (ed) Advances in biological and medical physics, vol 9. Academic press, INC, New York

    Google Scholar 

  • Weissman IL (1973) Transfer of tolerance. Transplantation 15:265–269

    Article  CAS  Google Scholar 

  • Weissman IL (2000) Stem Cells units of development, units of regeneration and units in evolution. Cell 1:157–168

    Article  Google Scholar 

  • Weissman IL (2002) The road ended up at stem cells. Immunol Rev 185:159–174

    Article  CAS  Google Scholar 

  • Weissman IL, Lustgraaf EC (1961) Antibody formation and repressor systems. Transplant Bull 28:134–135

    CAS  Google Scholar 

  • Weissman IL, Saito Y, Rinkevich B (1990) Allorecognition histocompatibility in a protochordate species: Is the relationship to MHC somatic [error;semantic] or structural?. Immunol Rev 113:227–241

    Article  CAS  Google Scholar 

  • Wolinsky H (2007) A mythical beast. increased attention highlights the hidden wonders of chimeras. EMBO Rep 8:212–214

    Article  CAS  Google Scholar 

  • Yu N, Kruskall MS, Yunis JJ, Knoll JH, Uhl L, Alosco S, Ohashi M, Clavijo O, Husain Z, Yunis EJ (2002) Disputed maternity leading to identification of tetragametic chimerism. N Engl J Med 346:1545–1552

    Article  Google Scholar 

  • Zhou L, Yoshimura Y, Huang Y, Suzuki R, Yokoyama M, Okabe M, Shimamura M (2000) Two independent pathways of maternal cell transmission to offspring: Through placenta during pregnancy and by breast-feeding after birth. Immunology 101:570–580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from US-Israel Binational Science Foundation (2003-010). The authors thank Amir Voskobynik for critical reviewing the manuscript Karla J. Palmeri for editing and Stefano Tiozzo for translating Sabbadins’ paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Voskoboynik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Voskoboynik, A., Rinkevich, B., Weissman, I.L. (2009). Stem Cells, Chimerism and Tolerance: Lessons from Mammals and Ascidians. In: Rinkevich, B., Matranga, V. (eds) Stem Cells in Marine Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2767-2_12

Download citation

Publish with us

Policies and ethics