Skip to main content

Dynamic Offset Compensated Operational Amplifiers

  • Chapter
Dynamic Offset Compensated CMOS Amplifiers

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Typical sensor output signals are in the microvolt range and have bandwidths ranging from DC up to a few kilohertz. Boosting such signals to levels compatible with typical analog-to-digital converters requires low-offset operational amplifiers with gain-bandwidth (GBW) products of a few megahertz. For example, implementing an amplification of 40 dB with a gain accuracy of 1% and a bandwidth of 1 kHz calls for a low-offset operational amplifier with a GBW of at least 10 MHz. Achieving such GBW products in combination with a microvolt-level input offset voltage is not straightforward. In the previous chapter, two dynamic offset compensation techniques were discussed: chopping and auto-zeroing. Chopping is a frequency modulation technique, which requires low-pass filters in the signal path to filter chopper ripple out. Therefore, chopping alone is not suitable for broadband applications. Auto-zeroing is a time domain technique in which the offset is measured and afterwards subtracted from the signal. Therefore, this technique alone is not suitable for continuous-time operation. However, in this chapter it will be shown that, by using these techniques in multi-path topologies, broadband continuous-time amplifiers can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Krummenacher, R. Vafadar, A. Ganesan, V. Valence, “A high-performance autozeroed CMOS opamp with 50μV offset”, IEEE ISSCC, pp. 350–351, Feb. 1997.

    Google Scholar 

  2. Texas Instruments, “Family of self-calibrating (self-cal) precision CMOS rail-to-rail output op amps (rev. B)”, Datasheet TLC4501, www.ti.com, Apr. 2001.

  3. C.G. Yu, R.L. Geiger, “An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers”, IEEE JSSC, pp. 601–610, May 1994.

    Google Scholar 

  4. I.E. Opris, G.T.A.A. Kovacs, “Rail-to-rail ping-pong op-amp”, IEEE JSSC, pp. 1320–1324, Sep. 1996.

    Google Scholar 

  5. M. Kayal, R.T.L Saez, M. Declercq, “An automatic offset compensation technique applicable to existing operational amplifier core cell”, CICC, pp. 419–422, May 1998.

    Google Scholar 

  6. A.T.K. Tang, “A 3μV-offset operational amplifier with 20nV/Hz input noise PSD at DC employing both chopping and autozeroing”, IEEE ISSCC, pp. 386–387, Feb. 2002.

    Google Scholar 

  7. Analog devices, “Zero-drift, single supply, rail-to-rail, input/ output operational amplifier, AD8628/8629/8630”, Datasheet Ref F, http://www.analog.com, Feb. 2008.

  8. Texas Instruments, “0.05uV/C max, single-supply CMOS op amps zero-drift”, Datasheet, Rev. D, OPA335, www.ti.com, June 12, 2003.

  9. Thomas Kugelstadt, “Auto-zero amplifiers ease the design of high-precision circuits”, Texas Instruments, focus.ti.com/lit/ an/slyt204/slyt204.pdf, 2005.

  10. C. C. Enz, G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization”, Proc. IEEE, pp. 1584–1614, Nov. 1996.

    Google Scholar 

  11. I.G. Finvers, J.W. Haslett, F.N. Trofimenkoff, “Noise analysis of a continuous-time auto-zeroed amplifier”, IEEE Trans. on Circuits and Systems II, pp. 791–800, Dec. 1996.

    Google Scholar 

  12. Intersil, “2MHz, super chopper-stabilized operational amplifier”, FN2920.10, Datasheet ICL7650S, http:// www.intersil.com, Apr. 2007.

  13. M.C.W. Coln, “Chopper stabilization of MOS operational amplifiers using feed-forward techniques”, IEEE JSSC, pp. 745–748, Dec. 1981.

    Google Scholar 

  14. Analog devices, “Zero-drift, single-supply, rail-to-rail input/ output operational amplifier, AD8551/8552/8554”, datasheet, Ref C, http://www.analog.com, Mar. 2007.

  15. I.G. Finvers, J.W. Haslett, F.N. Trofimenkoff, “A high temperature precision amplifier”, IEEE JSSC, pp. 120–128, Feb. 1995.

    Google Scholar 

  16. C.I. Menolfi, “Low Noise CMOS Chopper Instrumentation Amplifiers for Thermoelectric Microsensors”, 1 sted. Konstanz, Germany: Hartung-Gorre Verlag, chapter 5, 2000.

    Google Scholar 

  17. R. Burt, J.A. Zhang, “Micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path”, IEEE JSSC, pp. 2729–2736, Dec. 2006.

    Google Scholar 

  18. R.G.H. Eschauzier, L.P.T. Kerklaan, J.H. Huijsing, “A 100MHz 100-dB operational amplifier with multipath nested Miller compensation structure”, IEEE JSSC, pp. 1709–1717, Dec. 1992.

    Google Scholar 

  19. R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, “A programmable 1.5V CMOS class-AB operational amplifier with hybrid nested Miller compensation for 120dB gain and 6MHz UGF”, IEEE JSSC, pp. 1497–1504, Dec. 1994.

    Google Scholar 

  20. J.H. Huijsing, M.J. Fonderie, B. Shahi, “Frequency stabilization of chopper-stabilized amplifiers”, US patent Nr. 7,209,000, Apr. 24, 2007.

    Google Scholar 

  21. A. Bakker, J.H. Huijsing, “A CMOS chopper opamp with integrated low-pass filter”, Proc. ESSCIRC, pp. 200–203, Sep. 1997.

    Google Scholar 

  22. Texas Instruments, “1.8V, micropower CMOS operational amplifiers zero-drift series”, Datasheet OPA333, Rev. C, May 1, 2007.

    Google Scholar 

  23. J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, “A CMOS chopper offset-stabilized opamp”, IEEE JSSC, pp. 1529–1535, July 2007.

    Google Scholar 

  24. J.H. Huijsing, M.J. Fonderie, “Chopper chopper-stabilized operational amplifiers and methods”, US patent Nr. 6,734,723, Nov. 7, 2004.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). Dynamic Offset Compensated Operational Amplifiers. In: Dynamic Offset Compensated CMOS Amplifiers. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2756-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2756-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2755-9

  • Online ISBN: 978-90-481-2756-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics