Skip to main content

The Biological System of Elements

  • Chapter
  • First Online:
  • 1333 Accesses

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 45))

Abstract

By the Biological System of Elements, originally (Markert 1996) an array of chemical elements was denoted describing their distribution in green plants and abundance correlation among plant species, irrespective of biochemical “roles” (e.g., essentiality as a component of enzymes) and functions. Later on, the present author went to give a causal account which draws on different physicochemical features and necessities of biochemistry – including effects of elements other than C, N, S, O, H and P – and extending the scope of interest to other living beings and their interactions in ecosystems, that is, to stoichiometric ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, New York

    Google Scholar 

  • Chatt J, Jeffery Leigh G, Neukomm H, Pickett CJ, Stanley DR (1980) Redox potential–structure relationships in metal complexes. Part 2. The influence of trans-substituents upon the redox properties of certain dinitrogen complexes of molybdenum and tungsten and some carbonyl analogues: Inner-sphere versus outer-sphere electron transfer in the alkylation of co-ordinated dinitrogen. J Chem Soc Dalton Trans 121–127

    Google Scholar 

  • Chatt J, Kan CT, Jeffery Leigh G, Pickett CJ, Stanley DR (1980b) Transition-metal binding sites and ligand parameters. J Chem Soc Dalton Trans 1980:2032–2038

    Article  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Cowgill UM (1973) Biogeochemistry of the rare-earth elements in aquatic macrophytes from Linsley Pond, North Branford, Connecticut. Geochim Cosmochim Ac 37:2329–2345

    Article  CAS  Google Scholar 

  • Dixon N, Gazzola C, Blakeley RL, Zerner B (1975) Metalloenzymes: Simple biological role for nickel. J Am Chem Soc 97:4131–4135

    Article  CAS  PubMed  Google Scholar 

  • Elschenbroich C, Salzer A (1988) Organometallchemie. Eine kurze Einführung, Stuttgart, Teubner

    Google Scholar 

  • Emsley J (2001) Nature’s building blocks: An A–Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Farago ME (1986) Metal ions and plants. In: Xavier AV (Hrg) Frontiers in bioinorganic chemistry. VCH, Weinheim und Deerfield Beach, S. 106–122

    Google Scholar 

  • Feldmann J (1999) Determination of Ni(CO)4, Fe(CO)5, Mo(CO)6, and W(CO)6 in sewage gas by cryotrapping gas chromatography inductively coupled plasma mass spectrometry. J Environ Monitor 1:33–37

    Article  CAS  Google Scholar 

  • Feng DF, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: Update and reevaluation. Proc Natl Acad Sci USA 94:13028–13033

    Article  CAS  PubMed  Google Scholar 

  • Floriani C (1983) Interaction of small molecules with metal centers: The role of modeling studies. Pure Appl Chem 55:1–10

    Article  CAS  Google Scholar 

  • Fränzle O, Schimming CG (2008): Element fluxes in atmosphere, vegetation and soil. In Fränzle O, Kappen L, Blume H-P, Dierssen K (eds) Ecosystem organization of a complex landscape. Long-term research in the Bornhöved Lake District, Germany. Ecological Studies no. 202. Springer, Heidelberg and Berlin, pp 169–206

    Google Scholar 

  • Fränzle S, Markert B, Wünschmann S (2005) Technische Umweltchemie – innovative Verfahren der Reinigung verschiedener Umweltkompartimente. Ecomed, Landsberg/Lech

    Google Scholar 

  • Fränzle S, Djingova R, Hoffmann V, Panaiotu C, Jordanova D, Markert B, Wünschmann S (2009) Formation and determination of magnetite particles in biological samples for biomonitoring inputs of Fe and other heavy metals. Agrochimica, submitted

    Google Scholar 

  • Hedrick JL, Sallach HJ (1961) The metabolism of hydroxypyruvate. I. The nonenzymatic decarboxylation and autoxidation of hydroxypyruvate. J Biol Chem 236:1867–1871

    CAS  PubMed  Google Scholar 

  • Höhne WE (1980) Metallionen in Struktur und Funktion von Metallenzymen. Zeitschrift für Chemie 20:1–11

    Article  Google Scholar 

  • Irving H, Williams RJP (1953) The stability series for complex of divalent ions. J Chem Soc 3192–3205

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kaim W, Schwederski B (1993) Bioanorganische Chemie. Teubner, Stuttgart

    Google Scholar 

  • Kenna BT, Kuroda PK (1962) The search for technetium in nature. J Chem Educ 39:436–442

    Article  CAS  Google Scholar 

  • Kuroda PK (1998) A note on the discovery of technetium. Nucl Phys A503:178–182

    Google Scholar 

  • Markert B (1994a) The biological system of the elements (BSE) for terrestrial plants (glycophytes). Sci Total Environ 155:221–228

    Article  CAS  Google Scholar 

  • Markert B (1994b) Inorganic chemical fingerprinting of the environment: “Reference freshwater” – A useful tool for comparison and harmonization of analytical data in freshwater chemistry. Fresen J Anal Chem 349:697–702

    Article  CAS  Google Scholar 

  • Markert B (1996) Instrumental element and multi-element analysis of plant samples – Methods and applications. Wiley, Chichester, New York

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, Harcourt Bruce Jovanovich, London, Orlando

    Google Scholar 

  • Ochiai EI (1968) Catalytic functions of metal ions and their complexes. Coordin Chem Rev 3:49–89

    Article  CAS  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity in increasing salt concentrations: Implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Pedersen KJ (1948) Metal ion catalysis of enolization and decarboxylation of oxaloacetate ion. Acta Chim Scand 2:252–259

    Article  CAS  Google Scholar 

  • Railsback LB (2003) An earth scientist’s periodic table of the elements and their ions.Geology 31:737–740

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart

    Google Scholar 

  • Rehder D (1991) Bioanorganische Chemie des Vanadiums. Angew Chem 103:925–942

    Article  Google Scholar 

  • Riedel E (2004) Moderne Anorganische Chemie. De Gruyter, Berlin, New York

    Google Scholar 

  • Schrauzer GN (1975) Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation. Angew Chem Int Edn 14:514–522

    Article  CAS  Google Scholar 

  • Siegel BZ, Siegel SM, Speitel T, Waber J, Stoecker R (1984) Brine organisms and the question of habitat-specific adaptation. Origins Life 14:757–770

    Article  CAS  Google Scholar 

  • Sigel H, McCormick DB (1970) On the discriminating behavior of metal ions and ligands with regard to their biological significance. Account Chem Res 3:201–208

    Article  CAS  Google Scholar 

  • Still ER, Williams RJP (1980) Potential methods for selective accumulation of nickel(II) by plants. J Inorg Biochem 13:35–40

    Article  CAS  Google Scholar 

  • Strasburger E, Sitte P (1991) Lehrbuch der Botanik für Hochschulen, 33rd edn. Stuttgart, Jena, New York, Gustav Fischer

    Google Scholar 

  • Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal-sensors and metallochaperones. Account Chem Res 38:775–783

    Article  CAS  Google Scholar 

  • Vallee BL, Williams RJP (1968) Metalloenzymes. The entatic nature of their active sites. Proc Natl Acad Sci 59:498–505

    Article  CAS  PubMed  Google Scholar 

  • Vernay P, Vercraene M, Jean L, Gauthier-Moussard C, Hitmi A (2006) Changes in free amino acids in hyperaccumulator and tolerant plants during nickel stress. Abstractband COST 859 Scientific Workshop St.-Etienne 2006: -omics approaches and agricultural management: Driving forces to improve food quality and safety?

    Google Scholar 

  • Weltje L (2003) Bioavailability of Lanthanides to freshwater organisms. Speciation, accumulation and toxicity. PhD thesis, Technical University Delft (NL)

    Google Scholar 

  • Wood JM (1975) Biological cycles for elements in the environment. Naturwissenschaften 62:357–364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Fränzle .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fränzle, S. (2010). The Biological System of Elements. In: Chemical Elements in Plant and Soil: Parameters Controlling Essentiality. Tasks for Vegetation Science, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2752-8_1

Download citation

Publish with us

Policies and ethics