Skip to main content

Crack Growthin Fibre Metal Laminates Under Variable Amplitude Loading

  • Conference paper
ICAF 2009, Bridging the Gap between Theory and Operational Practice

Fatigue crack growth tests have been performed on three types of material (i.e., monolithic aluminium 2024— T3, laminated aluminium sheets and fibre metal laminate (FMLs)). Quantitative analysis of plastic zone sizes under variable amplitude loading in these materials is performed. Plastic zone sizes have been calculated using Irwin's relation and compared with the measurements done using digital image correlation (DIC) technique. For monolithic metal and laminated sheets large difference has been observed between the calculation and measurement of plastic zone, while in case of FMLs, smaller difference is observed. In addition, delamination shapes in FMLs, under variable amplitude load sequences, are investigated. A change in delamination shape has been observed due to overloads. However, no significant effect of this change in delamination shape has been identified on fatigue crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marissen, R. (1988) Fatigue crack growth in arall — a hybrid aluminium-aramid composite material. Technical report. Delft University of Technology, Delft,LR-574.

    Google Scholar 

  2. Takamatsu, T., Matsumura, T., Ogura, N., Shimokawa, T., and Kakuta, Y. (1999) Fatigue crack growth properties of a glare3-5/4 fiber/metal laminate. Engineering Fracture Mechanics, 63, 253–272.

    Article  Google Scholar 

  3. Takamatsu, T., Matsumura, T., Ogura, N., Shimokawa, T., and Kakuta, Y. (2003) Evaluation of fatigue crack growth behaviour of glare3 fiber/metal laminates using compliance method. Engineering Fracture Mechanics, 70, 2603– 2616.

    Article  Google Scholar 

  4. Guo, Y. J. and Wu, X. R. (1998) A theoretical model for predicting fatigue crack growth rates in fibre-reinforced metal laminates. Fatigue & Fracture of Engineering Materials and Structures, 21, 1133–1145.

    Article  Google Scholar 

  5. Guo, Y. J. and Wu, X. R. (1999) Bridging stress distribution in center-cracked fiber reinforced metal laminates: modelling and experiment. Engineering Fracture Mechanics, 63, 147–163.

    Article  Google Scholar 

  6. Alderliesten, R. C. (2007) Analytical prediction model for fatigue crack propagation and delamination growth in glare. International Journal of Fatigue, 29, 628–646.

    Article  Google Scholar 

  7. Guo, Y. J. and Wu, X. R. (1999) A phenomenological model for predicting crack growth in fiber-reinforced metal laminates under constant-amplitude loading. Composite Science and Technology, 59, 1825–1831.

    Article  Google Scholar 

  8. Schijve, J., Wiltink, F. J., and Van Bodegom, V. J. W. (1994) Flight-simulation fatigue tests on notched specimens of fiber-metal laminates. Technical Report Report No. LRV-10. Delft University of Technology, The Netherlands.

    Google Scholar 

  9. Guo, Y. J. and Wu, X. R. (2002) Fatigue behaviour and life prediction of frml under ca and va loading. Fatigue & Fracture of Engineering Materials and Structures, 25, 417–432.

    Article  MathSciNet  Google Scholar 

  10. Marissen, R. (1984) Flight simulation behavior of arall. Engineering Fracture Mechanics, 19, 261–277.

    Article  Google Scholar 

  11. Kawai, M. and Hachinohe, A. (2002) Two stress level fatigue of unidirectional fml hybrid composites: Glare2,. International Journal of Fatigue, 24, 567–580.

    Article  Google Scholar 

  12. Plokker, H. M. (2005) Crack closure in glare. Master's thesis. Delft University of Technology, The Netherlands.

    Google Scholar 

  13. Woerden, H. J. M. (1998) Variable amplitude fatigue of glare 3. Preliminary master thesis. Delft University of Technology, The Netherlands.

    Google Scholar 

  14. Alderliesten, R. C. and Woerden, H. J. M. (2003) Load history effects during fatigue crack propagation in glare. In Guillaume, M. (ed.), Fatigue of Aeronautical structures as an Engineering Challenge, pp. 509–530.

    Google Scholar 

  15. Marissen, R. (1988) Fatigue crack growth in arall — a hybrid aluminium-aramid composite material. Technical report. Delft University of Technology, Delft,LR-574.

    Google Scholar 

  16. Roebroeks, G. H. J. J. (1991) Towards GLARE — The Development of a fatigue insensitive and damage tolerant aircraft material. PhD thesis Delft University of Technology, Delft.

    Google Scholar 

  17. Vlot, A. and Gunnink, J. (2001) Fibre Metal Laminates-An introduction. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  18. Vlot, A., Vogelesang, L. B., and Vries, T. F. (1999) Toward application of fibre metal laminates in large aircraft. Aircraft Engineering — Aerospace Technology, 71, 558–570.

    Article  Google Scholar 

  19. Khan, S. U., Alderliesten, R. C., and Benedictus, R. (2008) Post-stretching induced stress redistribution in fibre metal laminates for increased fatigue crack growth resistance. Composite Science and Technology, 69, 396–405. In Press.

    Article  Google Scholar 

  20. Alderliesten, R. C. (2005) Fatigue crack propagation and delamination growth in Glare. PhD thesis Delft University of Technology, Delft.

    Google Scholar 

  21. Skorupa, M. (1998) Load interaction effects during fatigue crack growth under variable amplitude loading-a literature review. part i: Empirical trends. Fatigue & Fracture of Engineering Materials and Structures,, 21, 987–1006.

    Article  Google Scholar 

  22. Schijve, J. (1981) Prediction of fatigue crack growth in 2024-t3 alclad sheet specimen under flight-simulation loading. Technical report. Delft University of Technology, Delft,LR-574.

    Google Scholar 

  23. Mills, W. J. and Hertzberg, R. W. (1976) Load interaction effects on fatigue crack propagation in 2024-t3 aluminum alloy. Engineering Fracture Mechanics, 8, 657–667.

    Article  Google Scholar 

  24. Chen, G. L. and Roberts, R. (1985) Delay effects in aisi 1035 steel. Engineering Fracture Mechanics, 22, 201–212.

    Article  Google Scholar 

  25. Sehitoglu, H. and McDiarmid, D. L. (1980) Effect of load stepdown on fatigue crack arrest and retardation. International Journal of Fatigue, 2, 55–60.

    Article  Google Scholar 

  26. Ward-Close, C. M., Blom, A. F., and Ritchie, R. O. (1989) Mechanisms associated with transient fatigue growth under variable-amplitude loading:an experimental and numerical study. Engineering Fracture Mechanics, 32, 613– 638.

    Article  Google Scholar 

  27. Glinka, G. and Molski, K. (1980) Fatigue crack growth retardation under constant amplitude and variable mean stress. International Journal of Fatigue, 2, 105–111.

    Article  Google Scholar 

  28. Sutton, M. A., R., M. S., Helm, J. D., and Chao, Y. D. (2000) Advances in two-dimensional and three-dimensional computer vision. Photomechanics, Topics Applied Physics, 77, 323–372.

    Article  Google Scholar 

  29. Corr, D., Accardi, M., Graham-Brady, L., and Shah, S. (2007) Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete. Engineering Fracture Mechanics, 74, 109–121.

    Article  Google Scholar 

  30. Lemmen, H. J. K., Alderliesten, R. C., Benedictus, R., Hofstede, J. C. J., and Rodi, R. (2008) The power of digital image correlation for detailed elastic-plastic strain measurements. In Nikolinakou, M. K., Tsekouras, G., Gekas, V., and Pavlou, D. G. (eds.), New aspects of engineering mechanics, strucutres and enginereing geology, pp. 73–89. WSEAS WSEAS Press, Athens.

    Google Scholar 

  31. Rodi, R., Campoli, G., Alderliesten, R. C., and Benedictus, R. (2009) Characterization of the crack tip behavior in fibre metal laminates by means of digital image correlation. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA., pp. 1–18. AIAA.

    Google Scholar 

  32. Schijve, J. (2009) Fatigue of Structures and Materials, second edition edition. Springer Science + Business Media, B.V. Amsterdam.

    Google Scholar 

  33. Khan, S. U., Alderliesten, R. C., Schijve, J., and Benedictus, R. (2007) On the fatigue crack growth prediction under variable amplitude loading. In Pavlou, D. G. (ed.), Computational and experimental analysis of damaged materials, pp. 77–105. Research Signpost, Transworld Research Network, Kerala.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khan, S.U., Alderliesten, R.C., Benedictus, R. (2009). Crack Growthin Fibre Metal Laminates Under Variable Amplitude Loading. In: Bos, M.J. (eds) ICAF 2009, Bridging the Gap between Theory and Operational Practice. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2746-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2746-7_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2745-0

  • Online ISBN: 978-90-481-2746-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics