Skip to main content

Experimental And Theoretical Comparison Of Some Multiaxial Fatigue Design Criteria In The Context Of Life Assessment Of Rotating Parts In Turboengines

  • Conference paper

An experimental study is presented for two alloys commonly used in compressor and turbine discs, that includes classical uniaxial tests together with multiaxial ones, both in tension-compression torsion, in tension-internal pressure and in biaxial loads applied on a specially designed cruciform specimen. The results are analysed by comparison with many different multiaxial fatigue criteria, including those based on octahedral shear stress amplitude combined with hydrostatic pressure, and more recent models based on critical plane approaches. The study shows that none of them is able to correctly correlate all the considered uniaxial and multiaxial conditions. A new combined criterion is then proposed that offers a possible compromise and significantly improves the predictions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Garud YS. (1981), Multiaxial fatigue: a survey of the state of the art. J Test Evaluat; 9(3):165–78.

    Article  Google Scholar 

  2. Brown MW, Miller KJ. (1982), Two decades of progress in the assessment of multiaxial low cycle fatigue life. In: Amzallag C, Leis B, Rappe P, editors. Low-cycle fatigue and life prediction, ASTM STP 770. Philadelphia: ASTM; p 482–99.

    Chapter  Google Scholar 

  3. You BR, Lee SB. (1996), A critical review on multiaxial fatigue assessments of metals. Int J Fatigue; 18(4):235–44

    Article  Google Scholar 

  4. Wang YY, Yao WX. (2004), Evaluation and comparison of several multiaxial fatigue criteria. Int J Fatigue; 26(1):17–25

    Article  Google Scholar 

  5. Papadopoulos IV, Davoli P, Gorla C, Fillippini M, Bernasconi A.(1997), A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatigue; 19(3):219–35.

    Article  Google Scholar 

  6. Macha E, Sonsino CM. (1999), Energy criteria of multiaxial fatigue failure. Fatigue Fract Eng Mater Struct; 22, 1053–70.

    Article  Google Scholar 

  7. Y.S. Garud. (1981), A new approach to the evaluation of fatigue under multiaxial loadings. Trans.ASME JEMT, 103, 118–125.

    Google Scholar 

  8. Ellyin, F.(1974), A criterion for fatigue under multiaxial states of stress, in Mechanics Research Communications, vol 1, No. 4, 219–224.

    Article  Google Scholar 

  9. Radakrishnan, V.M. (1980), An analysis of low cycle fatigue based on hysteresis energy. Fatigue Fract. Engng Mater. Struct. 3, 75–84.

    Article  Google Scholar 

  10. Sines G. (1959), Behavior of Metals under Complex Static and Alternating Stresses, in Metal Fatigue, Sines G. and Waisman J.L. Editors, McGrawHill.

    Google Scholar 

  11. Crossland B. (1956), Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel, Proceedings of the International conference on Fatigue of Metals, Institution of Mechanical Engineers, London.

    Google Scholar 

  12. Brown M.W. and Miller K.J. (1973), A theory for fatigue failure under multiaxial stress-strain conditions. Proc Inst Mech Engrs, 187, 745–55.

    Google Scholar 

  13. Fatemi A. and Socie D.F. (1988), A critical plane to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract Eng Mater Struct, 11(3), 149–165.

    Article  Google Scholar 

  14. Smith K.N., Watson P. and Topper T.H. (1970), A stress-strain function for the fatigue of metals, Journal of Materials Science, 1970, 5(4), 767–776.

    Google Scholar 

  15. [15]Gonçalvès C.A., Araujo J.A., Mamiya E. N., Multiaxial fatigue:a stress based criterion for hard metals, Int. J. of Fatigue, Vol. 27, pp. 177–187, 2005.

    Article  MATH  Google Scholar 

  16. Chaudonneret M., Gilles P., Labourdette R.,Policella H. (1997) Machine d'essais de traction biaxiale pour essais statiques et dynamiques, La Recherche Aérospatiale., No 1977-5, pp. 299–305.

    Google Scholar 

  17. Chaboche, J.L., Jung, O. (1998), Application of a kinematic hardening viscoplasticity model with thresholds to the residual stress relaxation, Int. J. Plasticity, Vol.13, no 10, pp.785–807.

    Article  Google Scholar 

  18. Findley W.N. (1957) Fatigue of metals under combinations of Stresses, Transactions of the American Society of Mechanical Engineers, vol 79.

    Google Scholar 

  19. McDiarmid D.L.(1991), A general criterion for high cycle multiaxial fatigue failure, Fatigue Fract Engng Mater Struct, 14, 429–53.

    Article  Google Scholar 

  20. Kandil F.A., Brown M.W., Miller K.J. (1982), Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. The metal Society, London, 280, 203–210.

    Google Scholar 

  21. Dan Van K. (1973), Sur la résistance à la fatigue des métaux, Thèse de Doctorat ès Sciences, Sci.Techniq.l'Armement, 47, 647.

    Google Scholar 

  22. Military Handbook, (1998), MIL-HDBK-5H, December 1998.

    Google Scholar 

  23. Gomez V. (2001), Etude en fatigue biaxiale à haute température d'alliages métalliques pour disques de turbomachines aéronautiques, Thèse de Doctorat, Univ. Paul Sabatier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonnand, V. et al. (2009). Experimental And Theoretical Comparison Of Some Multiaxial Fatigue Design Criteria In The Context Of Life Assessment Of Rotating Parts In Turboengines. In: Bos, M.J. (eds) ICAF 2009, Bridging the Gap between Theory and Operational Practice. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2746-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2746-7_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2745-0

  • Online ISBN: 978-90-481-2746-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics