Skip to main content
  • 3904 Accesses

The 2024-T351 aluminum alloy is extensively used for fabricating aircraft parts. This alloy attains relatively low ductility at room temperature and is generally heat treated in various conditions to suit particular applications. The present study experimentally and numerically analyzes the damage mechanism of an Al2024-T351 plate (short transverse direction) subjected to multi-axial stress states. The purpose of this work is to predict the cyclic lifetime of the considered alloy, based on the local approach of damage evolution using continuum damage modeling (CDM). The experimental program involves different kinds of specimens and loading conditions. Monotonic and cyclic tests have been conducted in order to measure the mechanical response and also to perform micromechanical characterization of damage and fracture processes. The cyclic plasticity behavior has been characterized by means of smooth cylindrical specimens. For analyzing the evolution of plastic deformation and damage under multi-axial stress conditions, cyclic loading tests in the low cycle regime have been conducted on different round notched bars. The predictions of the CDM were compared to the experimentally observed mechanical response and to the micromechanical characterization of damage. Emphasis was laid on the prediction of the number of cycles to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lemaitre, J. and Chaboche, J.-L. (1987), Mechanics of solid materials, Oxford University Press.

    Google Scholar 

  2. Lemaitre, J. and Desmorat, D. (2005), Engineering Damage Mechanics, Springer, Heidelberg.

    Google Scholar 

  3. Chrysochoos. A. (1987), Dissipation et blocage d'energie lors d'un ecrouissage en traction simple, Thèse d'état de l'université, Paris.

    Google Scholar 

  4. Coffin, L.F. (1986), Jour. Vibration, Acoustics, Stress and Reliability in Design, Trans. ASME, vol. 108, pp. 241–248.

    Google Scholar 

  5. Pardoen, T. and Pineau, A. (2007). In: Comprehensive structural integrity encyclopedia, Chapter 6, vol. 2., Elsevier, Amsterdam.

    Google Scholar 

  6. Lassance, D., Fabrègue, D., Delannay and F., Pardoen, T. (2007), Prog. Mater. Sci., vol. 52, pp. 62–129.

    Article  Google Scholar 

  7. Garrett, G.G. and Knott, J.F. (1978), Metall. Trans. A, 9A, p. 1187.

    Google Scholar 

  8. de Hass, M. and De Hosson, J.Th.M. (2001), Scripta Mater., vol. 44, pp. 281–286.

    Article  Google Scholar 

  9. Quan, G., Heerens, J. and Brocks, W. (2004), Prakt. Metallogr., vol. 41., pp. 304–313.

    Google Scholar 

  10. Meier, B. and Gerold, V. (1987). In: Fatigue 87, Proceedings of the 3rd International Fatigue Conference, vol. 1, Ritchie, R.O. and Starke, E.A. (Eds.), Charlottesville Virginia, USA.

    Google Scholar 

  11. Bomas, H. and Mayr, P. (1987), In: Collected abstracts of the 4th International Conference on Age-Hardenable Aluminium Alloys, p. 42., Balatonfured, Hungry.

    Google Scholar 

  12. Hunsche, A. and Neuman P. (1986), Acta metal., vol. 34, pp. 207–217.

    Article  Google Scholar 

  13. Guvenilir, A., Breunig, T., Kinney, J.H. and Stock, S.R. (1997), Acta Mater., vol. 45(5), pp. 1977–1987.

    Article  Google Scholar 

  14. Guvenilir, A., Breunig, T., Kinney, J.H. and Stock, S.R. (1999), Philos. Trans. R. Soc. Lond. A, vol. 357, pp. 2755–2775.

    Article  Google Scholar 

  15. Khor, K., Buffière, J.Y., Ludwig, W. and Sinclair, I. (2006), Scripta Mater., vol. 55(1), pp. 47–50.

    Article  Google Scholar 

  16. Toda, H., Sinclair, I., Buffière, J.Y., Marie, E., Connolley, T., Joyce, M., Khor, K. and Gregson, O. (2003), Philos. Mag., vol. 83(21), pp. 2429–2448.

    Article  Google Scholar 

  17. Braun, R., Steglich, D. and Beckmann, F. (2006), DESY Annual Report, pp. 497–498, Hamburg.

    Google Scholar 

  18. Otin, S. (2007),.Lois d'endommagement incrementales isotrope/ anisotropies pour applications thermomecaniques complexes, Thèse d'état de l'ecole normale superieure de Cachan, Cachan.

    Google Scholar 

  19. Vyshnevskyy, A., Khan, S. and Mosler, J. (2009). In: 8th International Conference on Fracture and Damage Mechanics, 8–10 September 2009, Malta (In press).

    Google Scholar 

  20. Pirondi, A., Bonora, N., Steglich, D., Brocks, W., Hellmann D. (2006), Int. J. Plast., vol. 22, Issue 11, pp. 2146–2170.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vyshnevskyy, A., Khan, S., Mosler, J. (2009). Low Cycle Lifetime Prediction of Al2024 Alloy. In: Bos, M.J. (eds) ICAF 2009, Bridging the Gap between Theory and Operational Practice. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2746-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2746-7_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2745-0

  • Online ISBN: 978-90-481-2746-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics