Skip to main content

Airframe Life Extension By Optimised Shape Reworking — Overview Of Dsto Developments

  • Conference paper

The Defence Science and Technology Organisation Australia (DSTO) has developed a unique life extension approach, where optimised rework shapes are designed and implemented at critical airframe features. These shapes are used to remove local cracking, and also to minimise the peak stresses. The free-form optimal shapes are obtained using an iterative gradientless finite-element method, which is based on an analogy with biological growth. This paper covers the robust design approach, lessons learned from practical applications, fatigue trends, and improved and efficient in situ manufacturing methods. An important aspect of the this work has been the transition from theory and generic developments to practical applications. It is shown that large increases in fatigue lives and inspection intervals can be achieved with appropriate design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heller, M., Kaye, R. and Rose, L. R. F. (1999). A gradientless procedure for shape optimisation. J. Strain Anal. Eng. Des., v. 34, n. 5, pp. 323–336.

    Article  Google Scholar 

  2. McDonald, M. and Heller, M. (2004). Robust shape optimization of notches for fatigue-life extension. Struct. Multidisc. Optim., v. 28, n. 1, pp. 55–68.

    Article  Google Scholar 

  3. Waldman, W. and Heller M. (2006). Shape optimisation of holes for multipeak stress minimisation. Australian J. Mech. Eng., v. 3. n. 1, pp. 61–71.

    Google Scholar 

  4. Waldman, W., Heller, M. and Chen, G. (2001). Optimal free-form fillet shapes for tension and bending. Int. J. Fatigue, v. 23, n. 6, pp. 509–523.

    Article  Google Scholar 

  5. Burchill, M. and Heller, M. (2004). Optimal free-form shapes for holes in flat plates under uniaxial and biaxial loading. J. Strain Anal. Eng. Des., v. 39, n. 6, pp. 595–614.

    Article  Google Scholar 

  6. Burchill, M. and Heller, M. (2004). Optimal notch shapes for loaded plates. J. Strain Anal. Eng. Des., v. 39, n. 1, pp. 99–116.

    Google Scholar 

  7. Heller, M., McDonald, M., Burchill, M. and Watters, K. C. (2002). F-111 airframe life extension through rework shape optimisation of critical features in the wing pivot fitting. In: Proceedings of the 6 th Joint FAA/DoD/NASA Conference on Aging Aircraft, 16–19 September, San Francisco, CA, USA.

    Google Scholar 

  8. Evans, R., Braemar, R. and Heller, M. (2005). Aircraft life extension via shape optimization of holes in lower wing skin stiffeners. In: Proceedings of the 4 th Australasian Congress on Applied Mechanics, pp. 801–806, Xie, M. et al. (Eds.), 16–18 February, Melbourne, Australia.

    Google Scholar 

  9. Wescott, R., Semple, B. and Heller, M. (2005). Stress analysis of near optimal surface notches in 3D plates. J. Mech. Des., v. 127, pp. 173–1182.

    Article  Google Scholar 

  10. Kaye, R. and Heller, M. (2006). JSTAB — Shape optimization for structural detail design: Activity 2 report: Optimal shape design for JSF demonstrator geometry, DSTO-TR-1881, DSTO, Melbourne, Australia.

    Google Scholar 

  11. Waldman, W. and Heller, M. (2003). Shape optimisation of two closely-spaced holes for fatigue life extension. DSTO-RR-0253, DSTO, Melbourne, Australia.

    Google Scholar 

  12. Neuber, H. (1972). Zur optimirung der spannungskonzentration. Continuum Mechanics and Related Problems of Analysis, Nauka Publishing House, Moscow, pp. 375– 380.

    Google Scholar 

  13. Vigdergauz, S. B. and Cherkayev, A. V. (1986). A hole in plate, optimal for its biaxial extension-compression. Journal of Applied Mathematics and Mechanics, v. 50, n. 3, pp. 401–404.

    Article  MATH  MathSciNet  Google Scholar 

  14. Mattheck, C. and Burkhardt, S. (1990). A new method of structural shape optimisation based on biological growth. Int. J. Fatigue, v. 12, n. 3, pp. 185–190.

    Article  Google Scholar 

  15. Heywood, R. B. (1969). Photoelasticity for Designers (Chapter 11: Improvement of Designs), Pergamon Press.

    Google Scholar 

  16. Heller, M., Braemar, R., Waldman, W., Evans, R., McDonald, M. and Kaye. (2005). Local Shape Optimization for Airframe life extension. In Proceedings of the 6th World Congress of Structural and Multidisciplinary Optimization, 30 May–03 June, Rio de Janeiro.

    Google Scholar 

  17. Diab, H. and Tatangelo, A. (2009). F-111F wing economic life determination test report. DSTO-TR-2274, DSTO, Melbourne, Australia.

    Google Scholar 

  18. Swanton, G. (2009). 40 years of F-111 aircraft structural integrity support by the Defence Science and Technology Organisation. In: Proceedings of the 13th Australian International Aerospace Congress, 9–12 March, Melbourne, Australia.

    Google Scholar 

  19. Walker, K., Weller, S. and Walker, J. (2005). F-111 wing pivot fitting upper plate critical features fatigue assessment — post wing optimisation modification. DSTO-TR-1776, DSTO, Melbourne, Australia.

    Google Scholar 

  20. Molent, L., Ogden, R. and Pell, R. (2000). F/A-18 FS488 bulkhead fatigue coupon test program. DSTO-TR-0941, DSTO, Melbourne, Australia.

    Google Scholar 

  21. Huynh, J., Molent, L. and Barter, S. (2007). Fatigue crack growth predictions for 7050 aluminium alloy with different stress concentration factors. DSTO-RR-0330, DSTO, Melbourne, Australia.

    Google Scholar 

  22. Schijve, J. (1980). Stress gradients around notches. Report LR-297, Department of Aerospace Engineering, Delft University of Technology, Netherlands.

    Google Scholar 

  23. Wescott, R. and Heller, M. (2009). Algorithms for improved transformation of optimised blend shapes for effective numerically controlled manufacture. DSTO-RR-0340, DSTO, Melbourne, Australia.

    Google Scholar 

  24. Noda, N.A. and Takase, Y. (2002). Stress concentration factor formulas useful for all notch shapes in a flat test specimen under tension and bending. J. Test. Eval., v. 30, n. 5, pp. 369–381.

    Article  Google Scholar 

  25. Neuber, H. (1946). Theory of notch stresses — Principles for exact stress calculation. JW Edwards, Ann Arbor, Michigan.

    Google Scholar 

  26. Ang, D. and Clark, B. (2007). Shape optimisation specification document. ES-STRUCT-51-ASM071, Aerostructures Technologies, Melbourne, Australia.

    Google Scholar 

  27. Janardhana, M., Heller, M. and Davis, C. (2007). Transitioning rework shape optimisation technology for ADF airframe applications. In: Proceedings of the 5th Australasian Congress on Applied Mechanics, pp. 723–729, Veidt, M. et al. (Eds.), 10–12 December, Brisbane, Australia.

    Google Scholar 

  28. Burchill, M. and Heller, M. (2007). Stress and fracture analysis of circular arc blends for repair of cracked metallic components. In: Proceedings of the 5th Australasian Congress on Applied Mechanics, pp. 74–81, Veidt, M. et al. (Eds.), 10–12 December, Brisbane, Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heller, M. et al. (2009). Airframe Life Extension By Optimised Shape Reworking — Overview Of Dsto Developments. In: Bos, M.J. (eds) ICAF 2009, Bridging the Gap between Theory and Operational Practice. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2746-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2746-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2745-0

  • Online ISBN: 978-90-481-2746-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics