Skip to main content

Recent Developments in Earthquake Hazards Studies

  • Chapter
  • First Online:
New Frontiers in Integrated Solid Earth Sciences

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

In recent years, there has been great progress understanding the underlying causes of earthquakes, as well as forecasting their occurrence and preparing communities for their damaging effects. Plate tectonic theory explains the occurrence of earthquakes at discrete plate boundaries, such as subduction zones and transform faults, but diffuse plate boundaries are also common. Seismic hazards are distributed over a broad region within diffuse plate boundaries. Intraplate earthquakes occur in otherwise stable crust located far away from any plate boundary, and can cause great loss of life and property. These earthquakes cannot be explained by classical plate tectonics, and as such, are a topic of great scientific debate. Earthquake hazards are determined by a number of factors, among which the earthquake magnitude is only one factor. Other critical factors include population density, the potential for secondary hazards, such as fire, landslides and tsunamis, and the vulnerability of man-made structures to severe strong ground motion. In order to reduce earthquake hazards, engineers and scientists are taking advantage of new technologies to advance the fields of earthquake forecasting and mitigation. Seismicity is effectively monitored in many regions with regional networks, and world seismicity is monitored by the Global Seismic Network that consists of more than 150 high-quality, broadband seismic stations using satellite telemetry systems. Global Positioning Satellite (GPS) systems monitor crustal strain in tectonically active and intraplate regions. A relatively recent technology, Interferometric Synthetic Aperture Radar (InSAR) uses radar waves emitted from satellites to map the Earth’s surface at high (sub-cm) resolution. InSAR technology opens the door to continuous monitoring of crustal deformation within active plate boundaries. The U.S. Geological Survey (USGS), along with other partners, has created ShakeMap, an online notification system that provides near-real-time post-earthquake maps of ground shaking intensity. These maps are especially useful for the coordination of emergency response teams and for the improvement of building codes. Using a combination of these new technologies, with paleoseismology studies, we have steadily improved the science of earthquake forecasting whereby one estimates the probability that an earthquake will occur during a specified time interval. A very recent development is Earthquake Early Warning, a system that will provide earthquake information within seconds of the initial rupture of a fault. These systems will give the public some tens of seconds to prepare for imminent earthquake strong ground motion. Advances in earthquake science hold the promise of diminishing earthquake hazards on a global scale despite ever-increasing population growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen R.M. and H. Kanamori, 2003, The potential for earthquake early warning in southern California. Science 300, 786–789.

    Article  Google Scholar 

  • Bakun W, Aagaard B, Dost B, Ellsworth W, Hardbeck J, Harris R, Ji C, Johnston M, Langbein J, Lienkaemper J, Michael A, Nadeau R, Reasenburg P, Reichle M, Roeloffs E, Shakai A, Simpson R and Waldhauser F, 2005, Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature V. 437, p. 969–974.

    Article  Google Scholar 

  • Barka A., 1999, The 17 August 1999 Izmit earthquake. Science 285, 1858–1859.

    Article  Google Scholar 

  • Belardinelli M.E., Bizzarri A., Cocco M., 2000, Earthquake triggering by static and dynamic stress changes. Eos Trans. AGU. Fall Meet. Suppl, 81, 48.

    Google Scholar 

  • Beroza G.C. and W.L. Ellsworth, 1996, Properties of the seismic nucleation phase. Tectonophysics 261, 209–227.

    Article  Google Scholar 

  • Bolt B., 2006, Earthquakes. Fifth edition. W. H. Freeman and Company, New York.

    Google Scholar 

  • Brace W., and Kohlstedt D., 1980, Limits on lithospheric stress imposed by laboratory measurements. J. Geophys. Res. 85, 6248–6252.

    Article  Google Scholar 

  • Burchfiel B.C., Z. Chen, Y. Liu, L.H. Royden, 1995, Tectonics of the Longmen Shan and adjacent regoins, central China. Int. Geol. Rev. 37, 8, edited by W.G. Ernst, B.J. Skinner, L.A. Taylor.

    Google Scholar 

  • Calais E., Han J.Y., DeMets C., d Nocquet J.M., 2006. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res. 111, doi: 10.1029/2005JB004253.

    Google Scholar 

  • Campbell D.L., 1978. Investigation of the stress-concentration mechanism for intraplate earthquakes , Geophys. Res. Lett., 5(6), 477–479.

    Article  Google Scholar 

  • Chandrasekhar D.V. and Mishra D.C., 2002. Some geodynamic aspects of Kutch basin and seismicity: An insight from gravity studies, Curr. Sci. India, 83(4), 492–498.

    Google Scholar 

  • Cloetingh S., 1982. Evolution of passive margins and initiation of subduction zones, Ph.D. thesis, Utrecht Univ., Netherlands.

    Google Scholar 

  • Cooper J.D., 1998. Letter to the Editor, San Francisco Daily Evening Bulletin, Nov. 3, 1868 (as quoted in Lee and Espinosa-Aranda, 1998).

    Google Scholar 

  • Cua G. and T.H. Heaton, 2003. An envelope-based paradigm for seismic early warning, (abstract) Trans. Am. Geophys. Union 84, F1094–1095

    Google Scholar 

  • Cutcliffe C. H. 2000. Earthquake resistant building design codes and safety standards: The California experience. Geophys. J., 51, 259–262.

    Google Scholar 

  • Dragert H. and Hyndman R., 1995. Continuous GPS monitoring of elastic strain in the northern Cascadia subduction zone. Geophys. Res. Lett. 22:755–758.

    Article  Google Scholar 

  • Dragert H; Wang K; James TS, 2001. A Silent Slip Event on the Deeper Cascadia Subduction Interface. Science 292(5521): 1525–1528.

    Article  Google Scholar 

  • Ellsworth W.L. and G.C. Beroza, 1995. Seismic evidence for an earthquake nucleation phase. Science 268, 851–855.

    Article  Google Scholar 

  • Eshghi S. and Zaré M. 2004. Preliminary observations on the Bam, Iran, earthquake of December 26, 2003. EERI Special Earthquake Report.

    Google Scholar 

  • Field E.H., Dawson T.E., Felzer K.R., Frankel A.D., Gupta V., Jordan T.H., Parsons T., Petersen M.D., Stein R.S., Weldon II R.J., Wills C.J., 2008. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2), U.S. Geological Survey Open-File Report 2007-1337, CGS Special Report 203, SCEC Contribution #1138.

    Google Scholar 

  • Frankel A., Mueller C., Barnhard T., Perkins D., Leyendecker E., Dickman N., Hanson S., Hopper M., 1996. National Seismic Hazard Maps: Documentation June 1996, U.S. Geological Survey Open-File Report 96-532, Denver, CO, 111 pp.

    Google Scholar 

  • Freed A.A., 2005, Earthquake triggering by static, dynamic, and postseismic stress transfer, Ann. Rev. Earth Plant. Sci., 33, 335–367.

    Article  Google Scholar 

  • Freed A. M., Ali S. T. and Burgmann R. 2007. Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes. Geophys. J. Int., 169, 1164–1179.

    Article  Google Scholar 

  • Gangopadhyay A. and Talwani P., 2003. Symptomatic features of intraplate earthquakes , Seism. Res. Lett., 74, 863–883.

    Google Scholar 

  • Goetze C., 1978, The mechanisms of creep in olivine, Phil. Trans. Roy. Soc. Lond. A., 288, 99–119.

    Article  Google Scholar 

  • Goodacre A.K. and Hasegawa H.S., 1980. Gravitationally induced stresses at structural boundaries, Can. J. Earth Sci., 17, 1286–1291.

    Google Scholar 

  • Gordon R.G., 1995. Plate motions, crustal and lithospheric mobility, and paleomagnetism: prospective viewpoint. J. Geophys. Res., v. 100, p. 24367–24392.

    Article  Google Scholar 

  • Gordon R.G. and Stein S., 1992. Global tectonics and space geodesy. Science, v. 256, p. 333–342.

    Article  Google Scholar 

  • Gupta H.K., Rastogi B.K., and Narain H., 1972, Common features of the reservoir-associated seismic activities, Bull. Seis. Soc. Am., 62, 481–492.

    Google Scholar 

  • Grollimund B. and Zoback M.D., 2001. Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone?, Geology, 29(2), 175–178.

    Article  Google Scholar 

  • Helmstetter A., Kagan Y.Y., and Jackson D.D., 2006. Comparison of Short-Term and Time-Independent Earthquake Forecast Models in Southern California. Bull. Seismol. Soc. Am., v. 96, no. 1, p. 90–106.

    Article  Google Scholar 

  • Hinze W.J. et al., 1988. Models for Midcontinent tectonism: an update, Rev. Geophs., 26(4), 699–717.

    Article  Google Scholar 

  • Hirose H., et al. 1999. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophs. Res. Lett. 26(21): 3237–3240.

    Article  Google Scholar 

  • Irwan M., Kimata F., Hirahara K., Sagiya T., Yamagiwa A., 2004. Measuring ground deformations with 1-Hz GPS data: the 2003 Tokachi-oki earthquake (preliminary report). Earth Planets Space, 56: 389–393. http://news.thomasnet.com/IMT/archives/2007/07/earthquake_japan_nuclear_kashiwazaki-kariwa_plant_industry_automotive_production_halt.html

    Google Scholar 

  • Johanson I.A., Fielding E.J., Rolandone F., and Buergmann R., 2006. Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data. Bull. Seismol. Soc. Am., 96(4B):S269–S282.

    Article  Google Scholar 

  • Johnston A.C. and Kanter L.R., 1990. Earthquakes in stable continental crust, Sci. Am., 262(3), 68–75.

    Article  Google Scholar 

  • Johnston A. C., Coppersmith K. J., Kanter L.R. and Cornell C.A., 1994. The earthquakes of stable continental regions: assessment of large earthquake potential, TR-102261, Vol. 1–5, ed. Schneider J.F., Electric Power Research Institute (EPRI), Palo Alto, CA.

    Google Scholar 

  • Jordan T. 2003. Living on an Active Earth: Perspectives on Earthquake Science. The National Academies Press: Washington, D.C.

    Google Scholar 

  • Kanamori H., (2005). Real-time seismology and earthquake damage mitigation. Ann. Rev. Earth Planet. Sci. 33, 195–214.

    Article  Google Scholar 

  • Kayal J.R., Zhao D., Mishra O.P., De R., Singh O.P., 2002, The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation, Geophys. Res. Lett., 29, 2152–2155.

    Article  Google Scholar 

  • Kenner S.J. and Segall P., 2000. A mechanical model for intraplate earthquakes ; application to the New Madrid seismic zone, Science, 289(5488), 2329–2332.

    Article  Google Scholar 

  • King G.C.P., Stein R.S. and Lin J., 1994, Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935–953.

    Google Scholar 

  • Kostoglodov V., et al., 2003. A large silent earthquake in the Guerrero seismic gap, Mexico. Geophs. Res. Lett. Col. 32(15): 1807, doi:10.1029/2003GL017219.

    Article  Google Scholar 

  • Lawson A.C. (Ed.), 1908, The California earthquake of April 18, 1906. Report of the State Earthquake Investigation Commission. (reprinted in 1969 by the Carnegie Institution of Washington, D.C.).

    Google Scholar 

  • Lee W. H. K. and Espinosa-Aranda J. M., 1998. Earthquake Early Warning Systems: Current Status and Perspectives in Early Warning Systems for Natural Disaster Reduction. J. Zschau and A. N. Kuppers, Eds. Springer, New York: 834 pp.

    Google Scholar 

  • Lee W.H.K. and Espinosa-Aranda J.M., 2003. Earthquake early warning systems: Current status and perspectives: in ‘Early Warning Systems for Natural Disaster Reduction’, J. Zschau and A. N. Kuppers, Eds. Springer, Berlin: pp. 409–423.

    Google Scholar 

  • Liu L. and Zoback M.D., 1997. Lithospheric strength and intraplate seismicity in the New Madrid seismic zone, Tectonics, 16(4), 585–595.

    Article  Google Scholar 

  • Long L.T., 1988. A model for major intraplate continental earthquakes , Seism. Res. Lett., 59(4), 273–278.

    Google Scholar 

  • Lowry AR; Larson KM; Kostoglodov V; Bilham R. Transient fault slip in Guerrero, southern Mexico. Geophys. Res. Lett., vol. 28, no.19, pp. 3753–3756, 2001.

    Article  Google Scholar 

  • Mandal P., and Rastogi B.K., 2005, Self-organized fractal seismicity and b value of aftershocks of the 2001 Bhuj earthquake in Kutch (India): Pure Appl. Geophys., v. 162, no. 1, p. 53–72.

    Article  Google Scholar 

  • Melbourne TI, and FH Webb., 2003, Slow but not quite silent. Science 300: 1886–1887.

    Article  Google Scholar 

  • Mellors R.J., Sichoix L., Sandwell D.T., 2002. Lack of precursory slip to the 1999 Hecot Mine, California, earthquake as constrained by InSAR. Bull. Seis. Soc. Am. 92: 1443–1449.

    Article  Google Scholar 

  • Mishra O.P. and ZhaoD., 2003, Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: a fluid-driven earthquake?, Earth Planet. Sci. Lett., 212 (3–4), 393–405.

    Article  Google Scholar 

  • Mohindra R. and Bagati T.N., 1996, Seismicially induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya), Sediment. Geol., 101, 69–83.

    Article  Google Scholar 

  • Murray J. and Langbein J., 2006. Slip on the San Andreas Fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard. Bull. Seismol. Soc. Am., 96(4B):S283–S303.

    Article  Google Scholar 

  • Naseem A., Ali Q., Javed M., Hussain Z., Naseer A., Ali S. M., Ahmed I., Ashraf M., Scawthorn C. 2005. First report on the Kashmir earthquake of October 8, 2005. EERI Special Earthquake Report.

    Google Scholar 

  • Nelson A.R., Atwater B.F., Bobrowsky P.T., Bradley L.A., Clague J.J., et al., 1995. Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadian subduction zone. Nature 378: 371–374.

    Article  Google Scholar 

  • Quinlan G., 1984. Postglacial rebound and the focal mechanisms of eastern Canadian earthquakes , Can. J. Earth Sci., 21, 1018–1023.

    Article  Google Scholar 

  • Raphael A., and Bodin P., 2002, Relocating aftershocks of the 26 January 2001 Bhuj earthquake in western India. Seis. Res. Lett. 73, 417–418

    Google Scholar 

  • Reid H.F., 1910, The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Vol.2, Carnegie Institution of Washington, Washington, D.C.

    Google Scholar 

  • Roeloffs E, May 2006, Evidence for Aseismic Deformation Rate Changes Prior to Earthquakes. Annual Review of Earth and Planetary Sciences. Vol. 34: 591–627. (doi:10.1146/annurev.earth.34.031405.124947)

    Google Scholar 

  • Rogers G., and Dragert H., 2003. Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science 300(5627): 1942–1943.

    Article  Google Scholar 

  • Şaroglu F., Ő. Emre, and I. Kuşçu, Active Fault Map of Turkey, General Directorate of Mineral Research and Exploration (MTA), Eskişehir Yolu, 06520, Ankara, Turkey, 1992.

    Google Scholar 

  • Satake K. and Atwater B.F., 2007. Long-Term Perspectives on Giant Earthquakes and Tsunamis at Subduction Zones. Annu. Rev. Earth Planet. Sci. 35:349–374.

    Article  Google Scholar 

  • Savage J.C., Lisowski M., Prescott W.H., 1981. Geodetic strain meansurements in Washington. J. Geophys. Res. 86: 4929–4940.

    Article  Google Scholar 

  • Savage J.C., Lisowski M., Svarc J., 1994, Postseismic deformation following the 1989 ( M = 7.1) Loma Prieta, California, earthquake, J. Geophys. Res., 99, 13757–13765.

    Article  Google Scholar 

  • Sbar M.L. and Sykes L.R., 1973. Contemporary compressive stress and seismicity in eastern North America: An example of intra-plate tectonics, Geol. Soc. Am. Bull., 84, 1861–1882.

    Article  Google Scholar 

  • Schulte S.M. and Mooney W.D., 2005. An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophys. J. Int. 161, 707–721.

    Article  Google Scholar 

  • Segall P. and Davis J.L., 1997, GPS applications for geodynamics and earthquake studies, Ann Rev. Earth Planet. Sci., 25, 301–336.

    Article  Google Scholar 

  • Shishikura M., 2003, Cycle of interpolate earthquakes along the Sagami Trough deduced from tectonic geomorphology, Bull. Earthquake Res. Inst. Univ. Tokyo 78, 245–254.

    Google Scholar 

  • Simpson D.W., 1986, Triggered earthquakes, Ann. Rev. Earth Plant. Sci., 14, 21–42.

    Article  Google Scholar 

  • Sokoutis D. et al. Insights from scaled analogue modeling into the seismotectonics of the Iranian region. Tectonophysics Volume 376, Issues 3–4, 4 December 2003. pp. 137–149

    Google Scholar 

  • Stein R.S., Barka A.A., and Dieterich J.H., 1997, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophys. J. Int., 128, pp. 594–604.

    Article  Google Scholar 

  • Stein R.S., 1999, The role of stress transfer in earthquake occurrences, Nature402, 605–609.

    Article  Google Scholar 

  • Stein R.S., Toda S., Parsons T. And Grunewald E., 2006, A new probabilitstic seismic hazard assessment for greater Tokyo, Phil. Trans. R. Soc. A, 1965–1988, doi:10.1098/rsta.2006.1808.

    Google Scholar 

  • Stein S., Sleep N., Geller R.J., Wang S.C. and Kroeger G.C., 1979. Earthquakes along the passive margin of eastern Canada, Geophys. Res. Lett., 6(7), 537–540.

    Article  Google Scholar 

  • Sykes L.R., 1978. Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation, Rev. Geophys., 16(4), 621–688.

    Article  Google Scholar 

  • Tagare G. V. 2002. Earthquakes: Some ancient speculations. Speech given at the Institute for Oriental Study, Thane, India. http://www.orientalthane.com/speeches/gvtagare/1.html

  • Talwani P., 1988. The intersection model for intraplate earthquakes , Seism. Res. Lett., 59(4), 305–310.

    Google Scholar 

  • Talwani P., 1999. Fault geometry and earthquakes in continental interiors, Tectonophysics, 305, 371–379.

    Article  Google Scholar 

  • Talwani P. and Rajendran K., 1991. Some seismological and geometric features of intraplate earthquakes , Tectonophysics, 186, 19–41.

    Article  Google Scholar 

  • Tuttle M.P., Schweig III, E.S., Campbell J., Thomas P.M., Sims J.D., Jafferty III, R.H., 2005, Evidence for New Madrid earthquakes in

    Google Scholar 

  • Tse S., and Rice J., 1986. Crustal Earthquake Instability in Relation to the Depth Variation of Frictional Slip Properties, J. Geophys. Res., 91(B9), 9452–9472.

    Article  Google Scholar 

  • United Nations Population Division. World population prospects: the 2002 Revision.http://www.un.org/popin/data.html

  • USGS Earthquake Hazard Summary, Magnitude 8.0 – NEAR THE COAST OF CENTRAL PERU, 2007. http://earthquake.usgs.gov/eqcenter/eqinthenews/2007/us2007gbcv/#summary

  • USGS earthquake summary for the July 16, 2007 earthquake in Japan. http://earthquake.usgs.gov/eqcenter/eqinthenews/2007/us2007ewac/

  • Vinnik L.P., 1989. The origin of strong intraplate earthquakes , translated from O prirode sil’nykh vnutrilplitovykh zemletyaseniy, Doklady Akademii Nauk SSSR, 309(4), 824–827.

    Google Scholar 

  • Wald D., Wald L., Worden B., and Goltz J., 2003. ShakeMap – A tool for earthquake response, US Geological Survey Fact Sheet FS-087-03. (available at: http://pubs.usgs.gov/fs/fs-087-03/)

  • West M., Sanches J.J., McNutt S.R., 2005. Periodically Triggered Seismicity at Mount Wrangell, Alaska, After the Sumatra Earthquake. Science Vol. 308, No. 5725, 1144–1146.

    Article  Google Scholar 

  • Wright T.J., E.J. Fielding and B.E. Parsons, 2001a. Triggered slip: observations of the 17 August 1999 Izmit (Turkey) earthquake using radar interferometry, Geophys. Res. Lett., 28(6), 1079–1082.

    Article  Google Scholar 

  • Wright T.J., Parsons B.E. Fielding E.J., 2001b. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry, Geophys. Res. Lett. 28(10), 2117–2120.

    Article  Google Scholar 

  • Xu X., Yu G., Klinger Y., Tapponnier P. & Van Der Woerd J., 2006. Reevaluation of surface ruion of the 2001 Kunlunshan earthquake (M w 7.8), northern Tibetan Plateau, China, J. Geophys. Res., 111, B05316, doi:10.1029/2004JB003488.

    Article  Google Scholar 

  • Zoback M.L. and Zoback M.D., 1980, State of stress in the conterminous United States, J. Geophys. Res., 85, 6113–6156.

    Article  Google Scholar 

  • Zoback M.D., 1983. Intraplate earthquakes , crustal deformation and in-situ stress, in A workshop on ‘The 1886 Charleston, South Carolina, earthquake and its implications for today’, Open-File Report, No. 83–843, pp. 169–178, eds Hays, W.W., Gori, P.L. and Kitzmiller, C., US Geological Survey, Reston, VA.

    Google Scholar 

  • Zoback M.D. and Townend J., 2001, Implications of hydrostatic pore pressure and high crustal strength for the deformation of intraplate lithosphere, Tectonophysics 336, 19–30.

    Article  Google Scholar 

  • Zoback M.L., 1992, First- and second-order patterns of stress in the lithosphere: the world stress map project. J. Geophys. Res., 97, 11703–11728

    Article  Google Scholar 

  • Zoback M.L. and Richardson R.M., 1996. Stress perturbation associated with the Amazonas and other ancient continental rifts, J. Geophys. Res. B Solid Earth Planets, 101(3), 5459–5475.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. Mooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mooney, W.D., White, S.M. (2009). Recent Developments in Earthquake Hazards Studies. In: Cloetingh, S., Negendank, J. (eds) New Frontiers in Integrated Solid Earth Sciences. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2737-5_6

Download citation

Publish with us

Policies and ethics