Skip to main content

DynaQlim – Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas

  • Chapter
  • First Online:
New Frontiers in Integrated Solid Earth Sciences

Abstract

The isostatic adjustment of the solid Earth to the glacial loading (GIA, Glacial Isostatic Adjustment) with its temporal signature offers a great opportunity to retrieve information of Earth’s upper mantle to the changing mass of glaciers and ice sheets, which in turn is driven by variations in Quaternary climate. DynaQlim (Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas) has its focus to study the relations between upper mantle dynamics, its composition and physical properties, temperature, rheology, and Quaternary climate. Its regional focus lies on the cratonic areas of northern Canada and Scandinavia.

Geodetic methods like repeated precise levelling, tide gauges, high-resolution observations of recent movements, gravity change and monitoring of postglacial faults have given information on the GIA process for more than 100 years. They are accompanied by more recent techniques like GPS observations and the GRACE and GOCE satellite missions which provide additional global and regional constraints on the gravity field. Combining geodetic observations with seismological investigations, studies of the postglacial faults and continuum mechanical modelling of GIA, DynaQlim offers new insights into properties of the lithosphere. Another step toward a better understanding of GIA has been the joint inversion of different types of observational data – preferentially connected with geological relative sea-level evidence of the Earth’s rebound during the last 10,000 years.

Due to the changes in the lithospheric stress state large faults ruptured violently at the end of the last glaciation in large earthquakes, up to the magnitudes MW = 7–8. Whether the rebound stress is still able to trigger a significant fraction of intraplate seismic events in these regions is not completely understood due to the complexity and spatial heterogeneity of the regional stress field. Understanding of this mechanism is of societal importance.

Glacial ice sheet dynamics are constrained by the coupled process of the deformation of the viscoelastic solid Earth, the ocean and climate variability. Exactly how the climate and oceans reorganize to sustain growth of ice sheets that ground to continents and shallow continental shelves is poorly understood. Incorporation of nonlinear feedback in modelling both ocean heat transport systems and atmospheric CO2 is a major challenge. Climate-related loading cycles and episodes are expected to be important, hence also more short-term features of palaeoclimate should be explicitly treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J., Basham, P.W., 1989. Seismicity and seismotectonics of Canada’s eastern margin and craton, in Gregersen, S., Basham, P.W. (eds.), Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, 355–370. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Ågren, J., Svensson, R., 2007. Postglacial Land Uplift Model and System Definition for the New Swedish Height System RH 2000. Reports in Geodesy and Geographical Information Systems Rapportserie, LMV-Rapport 2007:4, Lantmäteriet, Gävle.

    Google Scholar 

  • Alley, R.B., Anandakrishnan, S., Jung, P., 2001. Stochastic resonance in the North Atlantic. Paleoceanography, 16, 190–198.

    Google Scholar 

  • Alley, R.B., Clark, P.U., Huybrechts, P., Joughin, I., 2005. Ice-sheet and sea-level changes. Science, 310, 456–460 doi:10.1126/science.1114613.

    Google Scholar 

  • Anda, E., Blikra, L.H., Braathen, A., 2002. The Berill fault – first evidence of neotectonic faulting in southern Norway. Norsk Geologisk Tidsskrift, 82, 175–182.

    Google Scholar 

  • Arvidsson, R., 1996. Fennoscandian earthquakes: Whole crust rupturing related to postglacial rebound. Science, 274, 744–746.

    Google Scholar 

  • Arvidsson, R., Kulhanek, O., 1994. Seismodynamics of Sweden deduced from earthquake focal mechanisms. Geophys. J. Int., 116, 377–392.

    Google Scholar 

  • Audet, P., Mareschal, J.-C., 2004. Variations in elastic thickness in the Canadian Shield. Earth Planet. Sci. Lett., 226, 17–31, doi:10.1016/j.epsl.2004.07.035.

    Google Scholar 

  • Barker, P., Thomas, E., 2006. Potential of the Scotia Sea Region for determining the onset and development of the Antarctic Circumpolar Current, in Futterer, D.K., D. Damaske, G. Kleinschmidt, H. Miller, D. Tessensohn (eds.), Antarctica: Contributions to Global Earth Sciences, 433–440. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Berg, J. van den, van de Wal, R.S.W., Oerlemans, J., 2006. Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model. J. Geophys. Res., 111, B05409, doi:10.1029/2005JB003790.

    Google Scholar 

  • Berger, A., 1984. Accuracy and frequency stability of the Earth’s orbital elements during the Quaternary, in Berger, A.L. et al. (eds.), Milankovitch and Climate, Part 1, 3–39. Reidel Pub. Co., Dordrecht, Netherlands.

    Google Scholar 

  • Berger, A., Pestiaux, P., 1984. Accuracy and stability of the Quaternary terrestrial insolation, in Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. (eds.), Milankovitch and Climate, Part 1, 83–111. D. Reidel Pub., Dordrecht, Netherlands.

    Google Scholar 

  • Bintanja, R., van de Wal, R.S.W., Oerlemans, J., 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437; 1 September 2005; doi:10.1038/nature03975.

    Google Scholar 

  • Blundell, D., Mueller, S., Mengel, K., 1992. A continent revealed; the European Geotraverse, Cambridge University Press, Cambridge.

    Google Scholar 

  • Blunier, T.,Brook, E.J., 2001. Timing of millennial-mcale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112.

    Google Scholar 

  • Brook, E.J., Harder, S., Severinghaus, J., Steig, E.J., Sucher, C.M., 2000. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles, 14, 559–572, doi:10.1029/1999GB001182.

    Google Scholar 

  • Bruneton, M., and 35 others, 2004. Complex lithospheric structure under the central Baltic Shield from surface wave tomography. J. Geophys. Res.-Solid Earth, 109(B10), B10303, doi:10.1029/2003JB002947.

    Google Scholar 

  • Bungum, H., Olesen, O., 2005. The 31st of August 1819 Lurøy earthquake revisited. Norwegian J. Geol. 85, 245–252.

    Google Scholar 

  • Bürgmann, R., Dresen, G., 2008. Rheology of the lower crust and upper mantle: Evidence from rockmechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36, 531–567, doi:10.1146/annurev.earth.36.031207.124326.

    Google Scholar 

  • Bush, A.B.G., 2004. Modelling of the late Qauternary climate over Asia: A synthesis. Boreas, 33, 155–163, doi:10.1111/j.1502-3885.2004.tb01137.x.

    Google Scholar 

  • Bäckblom, G., Stanfors, R., 1989. Interdisciplinary study of post-glacial faulting in the Lansjärv area northern Sweden. Technical Report TR-89-31, Svensk Kärnbränslehantering AB, Stockholm.

    Google Scholar 

  • Calais E., Han, J.Y., DeMets, C., Nocquet, J.M., 2006. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res., 111, B06402, doi:10.1029/2005JB004253.

    Google Scholar 

  • Carlson, A.E., Raisbeck, G.M., Clark, P.U., Brook, E.J., 2007. Rapid Holocene deglaciation of the Laurentide ice sheet. J. Climate, 20, 5126-5132, doi:10.1175/JCLI4273.1.

    Google Scholar 

  • Carlson, A.E., Legrande, A.N., Oppo, D.W., Came, R.E., Schmidt, G.A., Gavin, A., Anslow, F.S., Licciardi, J.M., Obbink, E.A., 2008. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nat. Geosci., 1, 620–624, doi:10.1038/ngeo285.

    Google Scholar 

  • Clark P.U., McCabe, A.M., Mix, A.C., Weaver, A.J., 2002. Rapid rise of sea level 19,000 years ago and its global implications. Science, 304, 1141–1144.

    Google Scholar 

  • Cowan E.A., Hillenbrand, C.D., Hassler, L.E., Ake, M.T., 2008. Coarse-grained terrigenous sediment deposition on continental rise drifts: A record of Plio-Pleistocene glaciation on the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 275-291, doi:10.1016/j.palaeo.2008.03.010.

    Google Scholar 

  • Cox, P., Jones, C., 2008. Illuminating the modern dance of climate and CO2. Science, 321, 1642–1644, doi:10.1126/science.1158907.

    Google Scholar 

  • Chung, W.-Y., 2002. Earthquakes along the passive margin of Greenland: Evidence for postglacial rebound control. Pure Appl. Geophys., 159, 2567–2584.

    Google Scholar 

  • Chung, W.-Y., Gao, H., 1997. The Greenland earthquake of July 11 1987 and postglacial fault reactivation along a passive margin. Bull. Seism. Soc. Am., 87, 1058–1068.

    Google Scholar 

  • Dehls, J.F., Olesen, O., Bungum, H., Hicks, E., Lindholm, C.D. and Riis, F., 2000. Neotectonic map, Norway and adjacent areas 1:3 mill. Geological Survey of Norway, Trondheim.

    Google Scholar 

  • DeMets, C., Wilson, D.S., 2008. Toward a minimum change model for recent plate motions: Calibrating seafloor spreading rates for outward displacement. Geophys. J. Int., 174, 825–841, doi:10.1111/j.1365-246X.2008.03836.x.

    Google Scholar 

  • Dietrich, R., Rülke, A., Scheinert, M., 2005. Present-day vertical crustal deformations in West Greenland from repeated GPS observations. Geophys. J. Int., 163, 865-874, 10.1111/j.1365-246X.2005.02766.x.

    Google Scholar 

  • Dowdeswell, J.A., Siegert, M.J.,1999. Ice-sheet numerical modeling and marine geophysical measurements of glacier-derived sedimentation on the Eurasian Arctic continental margins, Bull. Geol. Soc. Am., 111, 1080–1097.

    Google Scholar 

  • Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada, in Ehlers, J., Gibbard, P.L. (eds.), Quaternary Glaciations: Extent and Chronology 2: Part II North America, 373–424. Elsevier, Amsterdam.

    Google Scholar 

  • DynaQlim, 2008. Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas. http://dynaqlim.fgi.fi.

  • Ekman M., 1996. A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8, 158–165.

    Google Scholar 

  • Ekman M., Mäkinen J., 1996. Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys. J. Int., 126, 229–234.

    Google Scholar 

  • Elverhøi, A., Fjeldskaar, W., Solheim, A., Nyland-Berg, M. Russwurm, L., 1993. The Barents Sea Ice Sheet – a model of its growth and decay during the Last Glacial Maximum, Quaternary Sci. Rev., 12, 863–873.

    Google Scholar 

  • EPICA Community Members, 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, doi:10.1038/nature05301.

    Google Scholar 

  • Fleming K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J., 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites, Earth Planet. Sci. Lett., 163, 327–342.

    Google Scholar 

  • Fejerskov, M., Lindholm, C.D., 2000. Crustal stress in and around Norway; an evaluation of stress-generating mechanisms, in Nøttvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society Special Publications, 167, 451–467, Geological Society of London, London, UK.

    Google Scholar 

  • Forsström, P.-L., 2005. Through a glacial cycle: Simulation of the Eurasian ice sheet dynamics during the last glaciation. Doctoral thesis. University of Helsinki. http://urn.fi/URN:ISBN:952-10-2624-3.

  • GGOS, 2008. Global Geodetic Observing System. http://www.ggos.org.

  • Gregersen, S., 1992. Crustal stress regime in Fennoscandia from focal mechanisms. J. Geophys. Res., 97, 11821–11827.

    Google Scholar 

  • Gregersen, S., Voss, P., Shomali, Z.H., Grad, M., Roberts, R.G., Tor Working Group, 2006. Physical differences in the deep lithosphere of northern and central Europe, in Gee, D.G., Stephenson, R.A. (eds.), European Lithosphere Dynamics. Geological Society of London, Memoir 32, 313–322.

    Google Scholar 

  • Gregersen, S., Voss, P., 2009. Stress change over short geological time: Case of Scandinavia over 9,000 years since the Ice Age, in Reicherter, K., Michetti, A.M., Silva Barroso, P.G. (eds.), Historical and Pre-Historical Records of Earthquake Ground Effects for Seismic Hazard Assessment. Geological Society of London Memoir special publications, 316, 173–178. doi:10.1144/SP316.10.

    Google Scholar 

  • Grollimund, B., Zoback, M.D., 2001. Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone? Geology, 29, 175–178.

    Google Scholar 

  • Hagedoorn, J.M., Wolf, D., 2003. Pleistocene and recent deglaciation in Svalbard: Implications for tide-gauge, GPS and VLBI measurements. J. Geodyn., 35, 415–423.

    Google Scholar 

  • Hagen, J.O., Melvold, K., Pinglot, F., Dowdeswell, J.A., 2003. On the net mass balance of the glaciers and ice caps in Svalbard. Arct. Antarct. Alp. Res., 35, 264–270.

    Google Scholar 

  • Hay, W.M., E. Soeding, R.M. DeConto and C.N. Wold, 2002. The Late Cenozoic uplift – climate change paradox. Int. J. Earth Sci. (Geol Rundsch.) 91, 746–774, doi 10.1007/s00531-002-0263.

    Google Scholar 

  • Hemming, S.R., 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128.

    Google Scholar 

  • Hetzel, R., Hampel, A., 2005. Slip rate variations on normal faults during glacial-interglacial changes in surface loads, Nature, 435, 81–84, doi:10.1038/nature03562.

    Google Scholar 

  • Haug, G.H., Tiedemann, R., 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.

    Google Scholar 

  • Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D., Müller, B., 2008. The 2008 release of the World Stress Map (available online at http://www.world-stress-map.org).

  • Hieronymus, C.F., Shomali, Z.H., Pedersen, L.B., 2007. A dynamic model for generating sharp seismic velocity contrasts underneath continents: Application to the Sorgenfrei-Tornquist Zone. Earth. Planet. Sci. Lett., 262, 77–91, doi:10.1016/j.epsl.2007.07.043.

    Google Scholar 

  • Hjelt, S.-E. Korja, T. Kozlovskaya, E. Lahti, I. Yliniemi, J. Bear and Svekalapko Seismic Tomography Working Groups, 2006. Electrical conductivity and seismic velocity structures of the lithosphere beneath the Fennoscandian Shield. Memoirs – Geological Society of London. 32, 541–560.

    Google Scholar 

  • Ivins, E.R., James, T.S., 2005. Antarctic glacial isostatic adjustment: A new assessment. Antarctic Sci., 17, 537–549, doi:10.1017/S0954102005002968.

    Google Scholar 

  • Ivins, E.R., Klemann, V., James, T.S., 2003. Stress shadowing by the Antarctic ice sheet, J. Geophys. Res., 108(12), doi:10.1029/2002JB002182.

    Google Scholar 

  • Ivins, E.R., Wolf, D., 2008. Glacial isostatic adjustment: New developments from advanced observing systems and modeling. J. Geodyn., 46, 69–77, doi:10.1016/j.jog.2008.06.002.

    Google Scholar 

  • Janik, T., Kozlovskaya, E., Yliniemi, J., 2007. Crust-mantle boundary in the central Fennoscandian shield: Constraints from wide-angle P and S wave velocity models and new results of reflection profiling in Finland, J. Geophys. Res., 112, B04302, doi:10.1029/2006JB004681.

    Google Scholar 

  • Johansson, J.M., Davis, J.L., Scherneck, H-G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B.O. and Shapiro, I.I., 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results, J. Geophys. Res., 107, doi:10.1029/2001JB000400.

    Google Scholar 

  • Johnston, A.C., 1989. The effects of large ice-sheets on earthquake genesis, in Gregersen, S., Basham, P.W. (eds.), Earthquakes at North-Atlantic passive margins: Neotectonics and postglacial rebound, 141–173. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Jouzel, J. 31 others, 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796, doi:10.1126/science.1141038.

    Google Scholar 

  • Kawamura, K., 17 others. 2007. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912–916, doi:10.1038/nature06015.

    Google Scholar 

  • Kawamura, K., Matsushima, H., Aoki, S., Nakazawa, T., 2007. Phasing of orbital forcing and Antarctic climate over the past 470,000 years from an extended Dome Fuji O2/N2 chronology. American Geophysical Union, Fall Meeting 2007, abstract# PP33A–1005.

    Google Scholar 

  • Kakkuri J., 1997. Postglacial deformation of the Fennoscandian crust. Geophysica 33, 99–109.

    Google Scholar 

  • Klemann, V., Martinec, Z., Ivins, E.R., 2008. Glacial isostasy and plate motion. J. Geodyn. 46, 95–103, doi:10.1016/j.jog.2008.04.005.

    Google Scholar 

  • Klemann, V., Wolf, D., 1999. Implications of a ductile crustal layer for the deformation caused by the Fennoscandian ice sheet. Geophys. J. Int., 139, 216–226.

    Google Scholar 

  • Klemann, V., Wolf, D., 2007. Using fuzzy logic for the analysis of sea-level indicators with respect to glacial-isostatic adjustment: An application to the Richmond-Gulf region, Hudson Bay. Pure Appl. Geophys., 164, 683–696, doi:10.1007/s00024-007-0191–x.

    Google Scholar 

  • Knorr, G., Lohmann, G., 2007. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosys., 8, Q12006, doi:10.1029/2007GC001604.

    Google Scholar 

  • Korja T., Engels M., Zhamaletdinov A.A., Kovtun A.A., Palshin N.A., Smirnov M.Yu., Tokarev A., Asming V.E., Vanyan L.L., Vardaniants I.L., the BEAR Working Group, 2002. Crustal conductivity in Fennoscandia - a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space, 54, 535–558.

    Google Scholar 

  • Korja T., 2007. How is the European lithosphere imaged by magnetotellurics? Surveys Geophys., 28, (2–3), 239–272. doi:10.1007/S10712–007-9024-9.

    Google Scholar 

  • Kujansuu, R., 1964. Nuorista siirroksista Lappissa. Summary: Recent faults in Lapland. Geologi, 16, 30–36.

    Google Scholar 

  • Kukkonen, I.T., Jõeleht, A., 2003. Weichselian temperatures from geothermal heat flow data. J. Geophys. Res., 108(B3), ETG-9, doi:10.1029/2001JB001579.

    Google Scholar 

  • Kukkonen, I.T., Kinnunen, K., Peltonen, P., 2003. Mantle xenoliths and thick lithosphere in the Fennoscandian Shield. Phys. Chem. Earth, 28, 349–360.

    Google Scholar 

  • Lagerbäck, R., 1979. Neotectonic structures in northern Sweden, Geologiska Föreningens i Stockholm Förhandlingar, 100(1978), 271–278.

    Google Scholar 

  • Lagerbäck, R., 1990. Late Quarternary faulting and paleoseismology in northern Fennoscandia, with particular reference to the Lansjärv area, northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 112, 333–354.

    Google Scholar 

  • Lagerbäck, R. and Sundh, M. 2008. Early Holocene faulting and paleoseismicity in northern Sweden. SGU Research Paper C836, 80 pp.

    Google Scholar 

  • Lambeck, K., Smither C., Johnston, P., 1998. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int., 134, 102–144.

    Google Scholar 

  • Lambeck, K., Yokoyama, Y., Johnston, P., Purcell, A., 2000. Global ice volumes at the Last Glacial Maximum and early Late glacial, Earth Planet. Sci. Lett., 181, 513–527.

    Google Scholar 

  • van Lanen, X., Mooney, W.D., 2007. Integrated geologic and geophysical studies of North American continental intraplate seismicity, in Stein, S., and Mazzotti, S., (eds.), Continental Intraplate Earthquakes: Science, Hazard and Policy Issues: Geological Society of America Special Paper 425, 113–128, doi:10. 1130/2007.2425(08).

    Google Scholar 

  • Larsen, C.F., Motyka, R.J., Freymueller, J.T., Echelmeyer, K.A., Ivins, E.R., 2005. Rapid viscoelastic uplift in southern Alaska caused by post-Little Ice Age retreat. Earth Planetary Sci. Lett., 237, 548–560, doi:10.1016/j.epsl.2005.06.032.

    Google Scholar 

  • Lidberg M., 2007. Geodetic Reference Frames in Presence of Crustal Deformations. Doctoral thesis. Department of Radio and Space Science, Chalmers University of Technology. Ny serie Nr 2705.

    Google Scholar 

  • Lidberg M., Johansson, J.M., Scherneck, H.-G., 2006. Geodetic reference frames in the presence of crustal deformation – with focus on Nordic conditions. Symposium of the IAG sub commission for Europe (EUREF), June 14–17, Riga, 2006.

    Google Scholar 

  • Lidberg M., Johansson, J.M., Scherneck, H.-G., Davis, J.L., 2007. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J. Geodesy, 81(3), 213–230, doi:10.1007/s00190-006-0102-4.

    Google Scholar 

  • Lisiecki, L.E. Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.

    Google Scholar 

  • Lund, B., Zoback, M.D., 1999. Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield. Int. J. Rock Mech. Min. Sci., 36, 169–190.

    Google Scholar 

  • Lund, B., 2005. The effects of deglaciation on the crustal stress field and implications for endglacial faulting: A parametric study of simple Earth and ice models. Technical Report TR-05-04, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

    Google Scholar 

  • Lund, B., Näslund, J-O., 2008. Glacial isostatic adjustment: Implications for glacially induced faulting and nuclear waste repositories, in Connor, C.B., Chapman, N.A., Connor, L.J. (eds.), Volcanic and tectonic hazard assessment for nuclear facilities, 160–174. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • McCabe, A., Cooper, J.A.G., Kelley, J.T. 2007. Relative sea-level changes from NE Ireland during the last glacial termination, J. Geol. Soc. Lond., 164, 1059–1063, doi:10.1144/0016-76492006-164.

    Google Scholar 

  • Mäkinen J., Engfeldt A., Harsson B.G., Ruotsalainen H., Strykowski G., Oja T., Wolf D., 2005. The Fennoscandian Land Uplift Gravity Lines 1966–2003, in C. Jekeli, L. Bastos, J. Fernandes (eds.), Gravity, Geoid and Space Missions. Springer, IAG Symposia 129, 299–303.

    Google Scholar 

  • Mäkinen J., Koivula H., Poutanen M., Saaranen V., 2003. Vertical velocities in Finland from permanent GPS networks and from repeated precise levelling. J. Geodyn. 38, 443–456.

    Google Scholar 

  • Mäkinen J., Saaranen, V., 1998. Determination of postglacial land uplift from the three precise levelings in Finland. J. Geod., 72, 516–529

    Google Scholar 

  • Marshall S.J., James, T.S., Clarke, G.K.C., 2002. North American Ice Sheet reconstructions at the Last Glacial Maximum, Quat. Sci. Rev., 21, 175–192.

    Google Scholar 

  • Martinec, Z., 2000. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J. Int., 142, 117–141.

    Google Scholar 

  • Mayewski, P.A., et al. , 2009. State of the Antarctic and Southern Ocean climate system, Rev. Geophys., 47, RG1003, doi:10.1029/2007RG000231.

    Google Scholar 

  • Menard, H.W., Atwater, T., 1968. Changes in direction of sea floor spreading. Nature, 219, 463–467.

    Google Scholar 

  • Milne G.A., Davis, J.L., Mitrovica, J.X., Scherneck, H.-G., Johansson, J.M., Vermeer, M., Koivula, H., 2001. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science, 291, 2381–2385.

    Google Scholar 

  • Morgan, V., Delmotte, M., van Ommen, T., Jouzel, J., Chappellaz, J., Woon, S., Masson-Delmotte, V., Raynaud, D., 2002. Relative timing of deglacial climate events in Antarctica and Greenland. Science, 297, 1862–1864, doi:10.1126/science. 1074257.

    Google Scholar 

  • Munier, R., Fenton, C., 2004. Appendix 3: Review of postglacial faulting. In: Munier, R. and H. Hökmark, Respect distances. Rationale and Means of Computation, Tech. Report, R-04-17, Swedish Nuclear Fuel and Waste Management Company, Stockholm, Sweden.

    Google Scholar 

  • Muir Wood, R., 2000. Deglaciation Seismotectonics: A principal influence on intraplate seismogenesis at high latitudes. Quaternary Sci. Rev., 19, 1399–1411.

    Google Scholar 

  • Müller, J., Neumann-Redlin, M., Jarecki, F., Denker, H., Gitlein, O., 2006. Gravity Changes in Northern Europe as Observed by GRACE, in Tregoning, P., Rizos, C. (eds.), Dynamic Planet., IAG Symposia 130, 523–527, Springer.

    Google Scholar 

  • Muscheler, R., Kromer, B., Bjorck, S., Svensson, A., Friedrich, M., Kaiser, K.F., Southon, J., 2008. Tree rings and ice cores reveal C-14 calibration uncertainties during the Younger Dryas. Nature Geosci., 1, 263–267, doi:10.1038/ngeo128.

    Google Scholar 

  • Näslund, J.-O., Jansson, P., Fastook, J.L., Johnson, J., Andersson, L., 2005. Detailed spatially distributed geothermal heat flow data for modeling of basal temperatures and meltwater production beneath the Fennoscandian ice sheet. Ann. Glaciol., 40, 95–101, doi:10.3189/172756405781813582.

    Google Scholar 

  • OGC, 2005. OpenGIS Web Feature Service (WFS) Implementation Specification, Version 1.1.0, URL: http://www.opengeospatial.org/standards/wfs

  • OGC, 2006. OpenGIS Web Map Server Interface Implementation Specification, Version 1.3.0, URL: http://www.opengeospatial.org/standards/wms

  • OGC, 2007. OpenGIS Catalogue Service Implementation Specification, Version 2.0.2, URL: http://www.opengeospatial.org/standards/cat

  • Olesen, O., 1988. The Stuoragurra Fault, evidence of neotectonics in the Precambrian of Finnmark, northern Norway. Norsk Geologisk Tidsskrift, 68, 107–118.

    Google Scholar 

  • Olesen, O., Henkel, H., Lile, O.B., Mauring, E., Rönning, J.S., 1992. Geophysical investigations of the Stuoragurra postglacial fault, Finnmark, northern Norway. J. Appl. Geophys., 29, 95–118.

    Google Scholar 

  • Olsson, S., Roberts, R.G., Böðvarsson, R., 2006. Analysis of waves converted from S to P in the upper mantle beneath the Baltic Shield. Earth Planet. Sci. Lett., 257(1–2), 37–46. doi:10.1016/j.epsl.2007.02.017.

    Google Scholar 

  • Pagiatakis, S.D., Salib, P., 2003. Historical relative gravity observations and the time rate of change of gravity due to postglacial rebound and other tectonic movements in Canada. J. Geophys. Res. (Solid Earth), 108, 2406, doi:10.1029/2001JB001676.

    Google Scholar 

  • Pälike, H., Shackleton, N.J., Rohl, U., 2001. Astronomical forcing in Late Eocene marine sediments. Earth Planet. Sci. Lett., 193, 589–602.

    Google Scholar 

  • Pälli, A., Moore, J.C., Jania, J., Glowacki, P., 2003. Glacier changes in southern Spisbergen, Svalbard, 1901-2000. Ann. Glaciol., 37, 219–225.

    Google Scholar 

  • Pascal, C., Cloetingh, S.A.P.L., 2009. Gravitational potential stresses on passive continental margins: Application to the Mid-Norwegian Margin. Earth Planet. Sci. Lett. 277(3–4), 464–473, doi:10.1016/j.epsl.2008.11.014.

    Google Scholar 

  • Pascal, C., Roberts, D., Gabrielsen, R.H., 2005. Quantification of neotectonic stress orientations and magnitudes from field observations in Finnmark, northern Norway. J. Structural Geol., 27, 859–870, doi:10.1016/j.jsg.2005.01.011.

    Google Scholar 

  • Påsse, T., 1996. A mathematical model of the shore level displacement in Fennoscandia. Technical Report TR 96 24, Svensk Kärnbränslehantering AB, Stockholm.

    Google Scholar 

  • Pedersen H.A., Bruneton, M., Maupin, V., 2006. Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave analysis. Earth Planet. Sci. Lett., 244, 590-605, doi:10.1016/j.epsl.2006.02.009.

    Google Scholar 

  • Peltier, W.R., 2004. GLOBAL glacial isostasy and the surface of the iceage earth: The ice-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149, doi:10.1146/annurev.earth.32. 082503.144359.

    Google Scholar 

  • Plomerová, J., Babuška, V., Vecsey, L., Kozlovskaya, E., Raita, T., SSTWG, 2006. Proterozoic–Archean boundary in the mantle lithosphere of eastern Fennoscandia as seen by seismic anisotropy. J.Geodynam., 41(4), 400–410. doi:10.1016/j.jog.2005.10.008.

    Google Scholar 

  • Poutanen, M., Knudsen, P., Lilje, M., Nørbech, T., Plag, H.-P. Scherneck, H.-G., 2007. The Nordic Geodetic Observing System (NGOS). Proceedings of the IAG Dynamic Planet Symposium, Cairns 2005, IAG symposium, 130, 749–756. Springer Verlag.

    Google Scholar 

  • Rangelova, E., Sideris, M.G. 2008. Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J. Geodynamics, 46(3–5), 131–143, doi:10.1016/j.jog.2008.03.006

    Google Scholar 

  • Raymo, M.E. 1994. The initiation of Northern Hemisphere glaciation. Ann. Rev. Earth Planetary Sci., 22, 353–383.

    Google Scholar 

  • Raymo, M.E., Lisiecki, L.E., Nisancioglu, K.H., 2006. Plio-Pleistocene ice volume, Antarctic climate and the global δ18O record. Science, 313, 492–495, doi:10.1126/science.1123296.

    Google Scholar 

  • Rignot, E., Kanagaratnam, P., 2006. Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986–990, doi:10.1126/science.1121381.

    Google Scholar 

  • Rohling, E.J., Marsh, R., Wells, N.C., Siddall, M., Edwards, N.R., 2004. Similar contributions to sea-level from Antarctic and northern ice sheets. Nature, 430, 1016–1021, doi:10.1038/nature02859.

    Google Scholar 

  • Rohling, E.J., Grant, K., Hemleben, C., Siddall, M., Hoogakker, B.A.A., Bolshaw, M.,Kucera, M., 2008. High rates of sea-level rise during the last interglacial period. Nature Geosci., 1, 38–42, doi:10.1038/ngeo.2007.28.

    Google Scholar 

  • Roberts, D., 2000. Reverse-slip offsets and axial fractures in road-cut boreholes from the Caledonides in Finnmark, northern Norway: Neotectonic stress orientation indicators, Quat. Sci. Rev., 19, 1437–1445.

    Google Scholar 

  • Roberts, D., and Myrvang, A., 2004. Contemporary stress orientation features and horizontal stress in bedrock, Trøndelag, central Norway. NGU Bull., 442, 53–63.

    Google Scholar 

  • Saaranen V., Mäkinen J., 2002. Determination of post-glacial rebound from the three precise levellings in Finland: Status in 2002, in Poutanen M. , Suurmäki H. (eds.), Proceedings of the 14th General Meeting of the Nordic Geodetic Commission, Espoo, Finland, October 1–5, 2002. Finnish Geodetic Institute, 171–174.

    Google Scholar 

  • Sabadini, R., Vermeersen, L.L.A., 2004. Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth Geophysics, Modern Approaches in Geophysics Series, 20, Kluwer Academic Publ., Dordrecht, The Netherlands, 328 pp.

    Google Scholar 

  • Sandoval, S., Kissling, E., Ansorge, J., 2004. High-resolution body wave tomography beneath the SVEKALAPKO array – II. Anomalous upper mantle structure beneath the central Baltic Shield. Geophys. J. Int., 157(1), 200–214. doi: 10.1111/j.1365-246X.2004.02131.x

    Google Scholar 

  • Sato, T., Okuno, J., Hinderer, J., MacMillan, D.S., Plag, H.-P. Francis, O., Falk, R., Fukuda, Y., 2006. A geophysical interpretation of the secular displacement and gravity rates observed at Ny-Alesund, Svalbard in the Arctic – effects of post-glacial rebound and present-day ice melting. Geophys. J. Int., 165, 729–743, doi:10.1111/j.1365-246X.2006.02992.x.

    Google Scholar 

  • Scherneck, H.-G., Johansson, J.M., Elgered, G., Davis, J.L., Jonsson, B., Hedling, G., Koivula, H., Ollikainen, M., Poutanen, M., Vermeer, M., Mitrovica, J.X., Milne, G.A., 2002. BIFROST: Observing the three-dimensional deformation of Fennoscandia, in Mitrovica, J.X., Vermeersen, B.L.A. (eds.), Ice Sheets, Sea Level and the Dynamic Earth. American Geophysical Union, Geodynamics Series, 29, Washington, DC, 69–93.

    Google Scholar 

  • Schotman, H.H.A., Vermeersen, L.L.A., Wu, P., Drury, M.R., de Bresser, J.H.P., 2009. Constraints of Future GOCE Data on Thermomechanical Models of the Shallow Earth: A Sensitivity Study for Northern Europe, Geophys. J. Int., 178(1): 65–84. doi:10.1111/j.1365-246X.2009.04160.x.

    Google Scholar 

  • Schotman, H.H.A., Wu, P., Vermeersen, L.L.A., 2008. Regional Perturbations in a Global Background Model of Glacial Isostasy, Phys. Earth Planet. Inter., doi:10.1016/ j.pepi.2008.02.010.

    Google Scholar 

  • Sella, G.F., Stein, S., Dixon, T.H., Craymer, M., James, T.S., Mazzotti, S., Dokka, R.K., 2007. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett., 34, L02306, doi:10.1029/2006GL027081.

    Google Scholar 

  • Serebryanny, L.R., 1985. Mountain glaciation in the USSR in the Late Pleistocene and Holocene, in Velichko, A.A. (ed.), Late Quaternary Environments of the Soviet Union, University of Minnesota Press, 45–54.

    Google Scholar 

  • Shennan, I., Long, A., Metcalfe, S., 1998. IGCP Project 367 ‘Late Quaternary coastal records of rapid change: Application to present and future conditions’ and 25 years progress in research. Holocene, 8, 125–128.

    Google Scholar 

  • Sidall, M., Kaplan, M.R., 2008. A tale of two ice sheets. Nat. Geosci., 1, 570–571, doi:10.1038/ngeo286.

    Google Scholar 

  • SKB. 2006. Climate and climate-related issues for the safety assessment SR-Can. Technical Report TR-06-23, Svensk Kärnbränslehantering AB, Stockholm.

    Google Scholar 

  • Slunga, R., 1991. The Baltic Shield earthquakes. Tectonophysics, 189, 323–331.

    Google Scholar 

  • Stastna, M., Peltier, W.R., 2007. On box models of the North Atlantic thermohaline circulation: Intrinsic and extrinsic millennial timescale variability in response to deterministic and stochastic forcing. J. Geophys. Res. Oceans, 112, C10023, doi:10.1029/2006JC003938.

    Google Scholar 

  • Stauch, G., Lehkuhl, F., Frechen, M., 2007. Luminescence chronology from the Verhoyansk Mountains (North-Eastern Siberia). Quaternary Geochronology, 2, 255–259, doi:10.1016/j.quageo.2006.05.013.

    Google Scholar 

  • Steffen, H., Denker, H., Müller, J., 2008. Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamic models. J. Geodyn., 46(3–5), 155–164, doi:10.1016/j.jog.2008.03.002.

    Google Scholar 

  • Steffensen, J.P., 19 others, 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680–684, doi:10.1126/science.1157707.

    Google Scholar 

  • Stein, S., Cloetingh, S., Sleep, N.H., Wortel, R., 1989. Passive margin earthquakes, stresses and rheology, in Gregersen, S., Basham, P.W. (eds.), Earthquakes at North-Atlantic passive margins; neotectonics and postglacial rebound. NATO ASI Series, Series C: Mathematical and Physical Sciences, 266, 231–259, D. Reidel Publishing Company, Dordrecht-Boston, International.

    Google Scholar 

  • Stephansson, O., Särkkä, P., Myrvang, A., 1986. State of stress in Fennoscandia, in Proceedings of the International Symposium on Rock Stress and rock stress measurements, Stockholm, 1–3 September 1986, Stephansson, O. (eds), Lulea, Sweden, 21–32.

    Google Scholar 

  • Stewart, I.S., Sauber, K. and Rose, J.. 2000. Glacio-seismotectonics: Ice sheets, crustal deformation and seismicity. Quat. Sci. Rev., 19, 1367–1389.

    Google Scholar 

  • Svendsen, J.I., 29 others, 2004. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev., 23, 1229–1271, doi:10.1016/j.quascirev.2003.12.008.

    Google Scholar 

  • Talwani, P., 1989. Seismotectonics in the southeastern United States, in Gregersen, S., Basham, P.W. (eds.) Earthquakes at North-Atlantic passive margins: Neotectonics and postglacial rebound, 371–392. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Tamisiea, M.E., Mitrovica, J.X., Davis, J.L., 2007. GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia. Science, 316, 881, doi:10.1126/science. 1137157.

    Google Scholar 

  • Thomas, M., Sündermann, J., 1999. Tides and tidal torques of the world ocean since the last glacial maximum. J. Geophys. Res., 104(C2), 3159–3183.

    Google Scholar 

  • Tikkanen, M., Oksanen, J. 2002. Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia – Int. J. Geography 180(1–2), 9–20.

    Google Scholar 

  • Tsuboi, S., Kikuchi, M., Yamanaka, Y., Kanao, M., 2000. The March 25, 1998 Antarctic earthquake: Great earthquake caused by postglacial rebound. Earth Planets Space 52, 133–136.

    Google Scholar 

  • Tziperman, E., Raymo, M.E., Huybers, P., Wunsch, C., 2006. Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 21, doi:10.1029/2005PA001241.

    Google Scholar 

  • Uski, M., Hyvönen, T., Korja, A., Airo, M.-L., 2003. Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophysics, 363, 141–157.

    Google Scholar 

  • van de Plassche, O. (ed.),1986. Sea-Level Research: A Manual for the Collection and Evaluation of Data. Geo Books, Norwich.

    Google Scholar 

  • Van de Plassche, O., Chrzastowski, M.J., Orford, J.D., Hinton, A.C., and Long, A.J., 1995. Coastal evolution in the Quaternary: IGCP Project 274. Mar. Geol., 124, ix–xii.

    Google Scholar 

  • Vermeersen, L.L.A., Schotman, H.H.A., 2008. High-harmonic geoid signatures related to glacial isostatic adjustment and their detectability by GOCE, J. Geod., doi:10.1016/j.jog.2008.04.003.

    Google Scholar 

  • Vestøl O., 2006. Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J. Geodesy, 80, 248–258, doi:10.1007/s00190-006-0063-7.

    Google Scholar 

  • Vidstrand P., Wallroth, T., Ericsson, L.O., 2008. Coupled HM effects in a crystalline rock mass due to glaciation: Indicative results from groundwater flow regimes and stresses from an FEM study. Bull. Eng. Geol. Environ., 67, 187–197.

    Google Scholar 

  • Wahr J., Velicogna I., 2003. What might GRACE contribute to studies of postglacial rebound? Space Sciences Series 18, 319–330.

    Google Scholar 

  • Weaver, A.J., Eby, M., Fanning, A.F., Wiebe, E.C., 1998. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum, Nature, 394, 847–853.

    Google Scholar 

  • Webb, R.S., Rind, D.H., Lehman, S.J., Healy, R.J., Sigman, D., 1997. Influence of ocean heat transports on climate of the Last Glacial Maximum, Nature, 385, 695–699.

    Google Scholar 

  • Weidick, A. 1995. Land uplift and subsidence in Greenland since the Ice Age (in Danish), in Gregersen, S. (eds.), The Physical Nature of Greenland. Rhodos, Copenhagen.

    Google Scholar 

  • Whitehouse, P.L., Latychev, K., Milne, G.A., Mitrovica, J.X., Kendall, R., 2006. The impact of 3_D Earth structure on Fennoscandian glacial isostatic adjustment: Implications for space-geodetic estimates of present-day crustal deformations. Geophys. Res. Lett., 33, L13502, doi:10.1029/2006GL026568.

    Google Scholar 

  • Wolff, E.W., 2005. Understanding the past-climate history from Antarctica. Antarctic Sci., 17, 487–495.

    Google Scholar 

  • Wolf, D., Klemann, V., Wünsch, J., Zhang, F.-P., 2006. A reanalysis and reinterpretation of geodetic and geomorphologic evidence of glacial-isostatic uplift in the churchill region, Hudson Bay. Surv. Geophys., 27, 19–61, doi:10.1007/s10712-005-0641-x.

    Google Scholar 

  • Wu, P., 1998. Intraplate earthquakes and Postglacial Rebound in Eastern Canada and Northern Europe, in Wu, P. (ed.), Dynamics of the Ice Age Earth: A Modern Perspective, 603–628. Trans Tech Publ., Switzerland.

    Google Scholar 

  • Wu, P., Hasegawa, H.S., 1996. Induced stresses and fault potential in eastern Canada due to a disc load: A preliminary analysis. Geoph. J. Int., 125, 415–430.

    Google Scholar 

  • Wu, P., Johnston, P., Lambeck, K., 1999. Postglacial rebound and fault instability in Fennoscandia. Geoph. J. Int., 139, 657–670.

    Google Scholar 

  • Wu, P., Johnston, P., 2000. Can deglaciation trigger earthquakes in northern America? Geoph. Res. Lett. 27, 1323–1326, doi:10.1029/1999GL011070.

    Google Scholar 

  • Wu, P., Mazzotti, S., 2007. Effects of a lithospheric weak zone on postglacial seismotectonics in eastern Canada and the northern United states, in Stein, S., Mazzotti, S. (eds.), Continental Intraplate Earthquakes: Science, Hazard and Policy Issues: Geological Society of America Special Paper 425, 113–128, doi:10.1130/2007.2425(09).

    Google Scholar 

  • Wu, P., van der Wal, W., 2003. Postglacial sea levels on a spherical, self-gravitating viscoelastic Earth: Effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle, Earth Planet. Sci. Lett., 211, 57–68, doi:10.1016/S0012-821X(03)00199-7.

    Google Scholar 

  • Yliniemi, J., Kozlovskaya, E., Hjelt, S.-E., Komminaho, K., Ushakov, A., 2004. Structure of the crust and uppermost mantle beneath southern Finland revealed by analysis of local events registered by the SVEKALAPKO seismic array. Tectonophysics, 394, (1–2), 41–67. doi:10.1016/j.tecto.2004.07.056.

    Google Scholar 

  • Yu, S.Y., Berglund, B.E., Sandgren, P., Lambeck, K., 2007. Evidence for a rapid sea-level rise 7600 yr ago. Geology, 35(10), 891–894, doi:10.1130/G23859A.1.

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Google Scholar 

  • Zweck, C., Huybrechts, P., 2005. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophys. Res. D, D07103, doi:10.129/2004JD005489.

    Google Scholar 

Download references

Acknowledgments

The research of Markku Poutanen is partly funded by the Academy of Finland, grant 120212. The research of Erik Ivins is funded by NASA’s Earth Science Program, Solid Earth and Surface Processes Focus Area at the Jet Propulsion Laboratory, California Institution of Technology. The research of Jürgen Müller and Holger Steffen is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through research grant MU1141/8-1 (SPP 1257) and that of Volker Klemann through the DFG research grant MA3432/2-2 (SPP1257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Poutanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Poutanen, M. et al. (2009). DynaQlim – Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas. In: Cloetingh, S., Negendank, J. (eds) New Frontiers in Integrated Solid Earth Sciences. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2737-5_10

Download citation

Publish with us

Policies and ethics