Skip to main content

Responses of Cereal Plants to Environmental and Climate Changes – A Review

  • Chapter
  • First Online:
Book cover Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 2))

Abstract

The projections of the global climate changes on the Earth expect a rise in the concentration of greenhouse gases, increase in temperature and aridisation of the environment. By the middle of the twenty-first century, the concentration of CO2 will probably rise up to 500 μl l−1 of air. Already now, 61% of the area of land on the Earth has precipitation lower than 500 mm. One-sixth of the world’s population can be affected by an acute shortage of water. A total of 35–50% of inhabitants of the Earth are struggling with salinity of soil. All this currently has and will have consequences for the agricultural production. The areas between 15° and 30° of the north and south longitude and the deep inland areas are endangered the most. Cereals are major crops with respect to human nutrition. In order to ensure permanently sustainable production of cereals, it is important to study the diversity of their production under the influence of natural and climate changes. Based on this analysis, it is necessary to design measures to stabilise yields. This is the purpose of this chapter. Based on the study of a number of literature sources, we presume that the increased concentration of CO2 will only partly compensate for the losses of the yields of cereals resulting from the increase in temperature and aridisation of the environment taking place on a global scale. However, cereals have a number of adaptation mechanisms to maintain turgor and to improve water management in dry and salinised habitats. With a view of ensuring permanent sustainability of agricultural production under the changing natural and climatic conditions, we present two options of using the diversity of adaptation mechanisms: (1) to adapt the composition of the cereals grown to changing conditions; (2) to breed varieties more resistant to changing conditions. Breeding resistant genotypes is the least costly solution to ensure sustainable development of agriculture in arid areas. We believe that the choice of suitable selection criteria is most important. For the screening of genotypes resistant to drought and salinisation, it is important to use more parameters: physiological and biochemical indicators at the cellular level and the genes of resistance to drought and salinisation. The suitable selection criteria and the important features of drought and salinisation resistance are a high level of osmotic adjustment, low stomatal conductivity and good growth of roots. Breeding aimed at achieving a higher degree of drought resistance should be focused on (1) improvement of the availability of water through the root system; (2) the limitation of water loss through transpiration and higher water use efficiency for production of biomass; (3) prolongation of the activity and increase of the power of the sink. In the selection of the genetic sources of resistance to abiotic stresses, we recommend paying an even greater attention to wild species and region-specific and primitive varieties of cereals, originating from worse natural and climatic areas. Another promising path is to use gene transfers to improve the photosynthetic and growth capacity of cereals during the presence of stress factors. In order to improve the water management in cereals under dry conditions, we also suggest using growth regulators to a greater extent. Abscisic acid applied on plants can serve as an antitranspirant. It can increase water use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbad H., El Jaafari S.A., Bort J., Araus J.L. (2004) Comparative relationship of flag leaf and the ear photosynthesis with the biomass and grain yield of durum wheat under a range of water conditions and different genotypes. Agronomie 24, 19–28.

    Article  Google Scholar 

  • Abdelkader A.F., Aronsson H., Sundqvist CH. (2007) High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiologia Plantarum 130, 157–166.

    Article  CAS  Google Scholar 

  • Ainsworth E.A. (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology 14, 1642–1650.

    Article  Google Scholar 

  • Ainsworth E.A., Long S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the response of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165, 351–371.

    Article  PubMed  Google Scholar 

  • Annicchiarico P., Pecetti L. (1995) Morpho-physiological traits to complement grain yield selection under semi-arid Mediterranean conditions in each of the durum wheat types mediterraneum typicum and syriacum. Euphytica 86, 191–198.

    Article  Google Scholar 

  • Araus J.L., Brown H.R., Febrero A., Bort J., Serret M.D. (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell and Environment 16, 383–392.

    Article  CAS  Google Scholar 

  • Arnau G., Monneveux P., This D., Alegre L. (1997) Photosynthesis of six barley genotypes as affected by water stress. Photosynthetica 34, 67–76.

    Article  Google Scholar 

  • Auge R.M., Green C.D., Stodola A.J.W., Saxton A.M., Olinick J.B., Evans R.M. (2000) Correlations of stomatal condustance with hydraulic and chemical factors in several deciduous tree species in natural habitat. New Phytologist 145, 483–500.

    Article  Google Scholar 

  • Balogh A., Hornok M., Pepo P. (2007) Study of physiological parameters in sustainable winter wheat (Triticum aestivum L.) production. Cereal Research Communications 35, 205–208.

    Article  Google Scholar 

  • Barnabas B., Jager K., Feher A. (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment 31, 11–38.

    CAS  Google Scholar 

  • Blum A. (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56, 1159–1168.

    Article  Google Scholar 

  • Bota J., Medrano H., Flexas J. (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist 162, 671–684.

    Article  CAS  Google Scholar 

  • Bray E.A. (1993) Molecular responses to water deficit. Plant Physiology 103, 1035–1040.

    PubMed  CAS  Google Scholar 

  • Brestic M. (1996) Water regime, growth and accumulation processes of spring barley. Rostlinna Vyroba 42, 481–487.

    Google Scholar 

  • Brestic M., Olsovska K. (2001) Vodni stres rastlin: priciny, dosledky, perspektivy (Water Stress of Plants: Causes, Incidence, Perspectives, in Slovak), Slovak University of Agriculture, Nitra, Slovakia.

    Google Scholar 

  • Campos H., Cooper M., Edmeades G.O., Loffler C., Schussler J.R., Ibanez M. (2006) Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica 51, 369–381.

    Google Scholar 

  • Close T.J. (1996) Dehydrins: Emergence of biochemical role of family of plant dehydrations proteins. Physiologia Plantarum 97, 795–803.

    Article  CAS  Google Scholar 

  • Colmer T.D., Flowers T.J., Munns R. (2006) Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57, 1059–1078.

    Article  PubMed  CAS  Google Scholar 

  • Colmer T.D., Munns R., Flowers T.J. (2005) Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture 45, 1425–1443.

    Article  CAS  Google Scholar 

  • Condon A.G., Richards R.A., Rebetzke G.J., Farquhar G.D. (2004) Breeding for high water use efficiency. Journal of Experimental Botany 55, 2447–2460.

    Article  PubMed  CAS  Google Scholar 

  • Cornic G., Ghasghaie J., Genty B., Briantais J.M. (1992) Leaf photosynthesis is resistant to a mild drought stress. Photosynthetica 27, 295–309.

    CAS  Google Scholar 

  • Cornic G. (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends in Plant Science 5, 187–188.

    Article  Google Scholar 

  • Del Pozo A., P’Erez P., Guti’Errez D., Alonso A., Morcuende R., Martinez-Carrasco R. (2007) Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany 59, 371–380.

    Article  CAS  Google Scholar 

  • De Lucia E.H., Sasek T.W., Strain B.R. (1985) Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research 7, 175–184.

    Article  Google Scholar 

  • Deng X.P., Shan L., Inanaga S., Inoue M. (2005) Water-saving approaches for improving wheat production. Journal of the Science of Food and Agriculture 85, 1379–1388.

    Article  CAS  Google Scholar 

  • Duskova S., Hejnak V., Martinkova J., Ernestova Z., Krizkova J. (2008) The effect of soil drought on the water use efficiency in spring barley (Hordeum vulgare L.). Cereal Research Communications 36, 819–822.

    Google Scholar 

  • Duvigneaud P. (1988) Ekologicka Synteza (Ecological Synthesis, in Czech). Academia, Prague, Czech Republic.

    Google Scholar 

  • Ebadi A., Sajed K., Asgari R. (2007) Effects of water deficit on dry matter remobilization and grain filling trend in three spring barley genotypes. Journal of Food Agriculture and Environment 5, 359–362.

    Google Scholar 

  • Ehdaie B., Alloush G.A., Waines J.G. (2008) Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research 106, 34–43.

    Article  Google Scholar 

  • El-Hendawy S.E., Hu Y., Schmidhalter U. (2007) Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. Journal of Integrative Plant Biology 49, 1352–1360.

    Article  CAS  Google Scholar 

  • Escalona J.M., Flexas J., Medrano H. (1999) Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Australian Journal of Plant Physiology 26, 421–433.

    Article  Google Scholar 

  • Fageria N.K., Baligar V.C., Clark R.B. (2006) Physiology of Crop Production. Haworth Press, New York, London, Oxford.

    Google Scholar 

  • Fitter A.H., Hay R.K.M. (2002) Environmental Physiology of Plants, 3rd ed. Academic Press Limited, London, UK.

    Google Scholar 

  • Flexas J., Bota J., Escalona J.M., Sampol B., Medrano H. (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology 29, 461–471.

    Article  Google Scholar 

  • Flexas J., Bota J., Cifre J., Escalona J.M., Galmes J., Gulias J., Lefi E.K., Martinez-Canellas S.F., Moreno M.T., Ribas-Carbo M., Riera D., Sampol B., Medrano H. (2004a) Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Annals of Applied Biology 144, 273–283.

    Article  Google Scholar 

  • Flexas J., Bota J., Loreto F., Cornic G., Sharkey T.D. (2004b) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology 6, 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Flexas J., Ribas-Marco M., Bota J., Galmes J., Henkle M., Martinez-Canellas S., Medrano H. (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to condition of low stomatal conductance and chloroplast CO2 concentration. New Phytologist 172, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Foyer C.H., Noctor G. (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytologist 146, 359–388.

    Article  CAS  Google Scholar 

  • Fricke W., Peters W. (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell levell. Plant Physiology 129, 374–388.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite A.J., von Bothmer R., Colmer T.D. (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. Journal of Experimental Botany 56, 2365–2378.

    Article  PubMed  CAS  Google Scholar 

  • Ghashghaie J., Cornic G. (1994) Effect of temperature on partitioning of photosynthetic electron flow between CO2 assimilation and CO2 reduction and on the O2/CO2 specificity of Rubisco estimated from gas exchange and chlorophyll fluorescence measurements on intact leaves of two C3 plants. Journal of Plant Physiology 143, 643–650.

    CAS  Google Scholar 

  • Gonzalez A., Martin I., Ayerbe L. (1999) Barley yield in water-stress conditions. The influence of precocity, osmotic adjustment and stomatal conductance. Field Crop Research 62, 23–34.

    Article  Google Scholar 

  • Gonzalez A., Martin I., Ayerbe L. (2007) Response of barley genotypes to terminal soil moisture stress: phenology, growth, and yield. Australian Journal of Agricultural Research 58, 29–37.

    Article  Google Scholar 

  • Gonzalez A., Martin I., Ayerbe L. (2008) Yield and osmotic adjustment capacity of barley under terminal water-stress conditions. Journal of Agronomy and Crop Science 194, 81–91.

    Article  Google Scholar 

  • Goodger J.Q.D., Sharp R.E., Marsh E.L., Schachtman D.P. (2005) Relationships between xylem sap constituents and leaf conductance of well-watered and water-stressed maize across three xylem sap sampling techniques. Journal of Experimental Botany 56, 2389–2400.

    Article  PubMed  CAS  Google Scholar 

  • Gorny A.G. (2001a) Photosynthetic activity of flag under varied nutrition and soil moisture. Cereal Research Communications 29, 159–166.

    Google Scholar 

  • Gorny A.G. (2001b) Variation in utilization efficiency and tolerance to reduced water and nitrogen supply among wild and cultivated barleys. Euphytica 117, 59–66.

    Article  Google Scholar 

  • Griffiths H., Parry M.A.J. (2002) Plant responses to water stress. Annals of Botany 89, 801–802.

    Article  PubMed  Google Scholar 

  • Gulli M., Rampino P., Lupotto E., Marmiroli N., Perrotta C. (2005) The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize. Journal of Cereal Science 42, 25–31.

    Article  CAS  Google Scholar 

  • Hafsi M., Akhter J., Monneveux P. (2007) Leaf senescence and carbon isotope discrimination in durum wheat (Triticum durumDesf.) under severe drought conditions. Cereal Research Communications 35, 71–80.

    Article  Google Scholar 

  • Hamdy A., Fagan R., Scarascia-Mugnozza E. (2003) Coping with water: Water saving and increasing water productivity. Irrigation and Drainage 52, 3–20.

    Article  Google Scholar 

  • Hasegawa P.M., Bresan R.A., Zhu J.K., Bohnert H.J. (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Molecular Biology 51, 463–499.

    Article  CAS  Google Scholar 

  • Hay R., Porter J. (2006) The Physiology of Crop Yield, 2nd ed. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • Hejnak V. (2003a) Vyuziti izotopove metody (15N), spalne kalorimetrie a gazometrie v produkcni fyziologii jecmene jarniho a spenatu seteho (The Use of the Isotopic method (15N), the Combustion Calorimetry and the Gas-exchange Method in the Production Physiology of Spring Barley and Spinach, in Czech), Czech University of Agriculture, Prague, Czech Republic.

    Google Scholar 

  • Hejnak V. (2003b) The effect of drought on production of dry matter in spring barley (Hordeum vulgare L., cv. Amulet, Krona and historical cv. Nürnberg). Scientia Agriculturae Bohemica 34, 121–128.

    Google Scholar 

  • Hejnak V., Krizkova J. (2004) The effect of water stress on photosynthesis of spring barley. Zeszyty Problemowe Postepow Nauk Rolniczych 496, 241–249.

    Google Scholar 

  • Hejnak V., Pulkrabek J., Safrankova I., Stuchlikova K., Otahal V. (2004) Water stress in production process of sugar beet and regulatory role of abscisic acid. Listy Cukrovarnicke a Reparske 120, 216–219.

    CAS  Google Scholar 

  • Hnilicka F., Blaha L., Zamecnik J., Novak V., Ottova M. (2000) Influence of abiotic stresses on the content of net energy in winter wheat (Triticum aestivum L.) grains. Rostlinna Vyroba 46, 549–554.

    Google Scholar 

  • Hnilicka F., Hnilickova H., Ceska J. (2004) The influence of abiotic stresses upon photosynthesis and growth of wheat. Zemdirbyste 86, 54–66.

    Google Scholar 

  • Hoffmann B., Burucs Z. (2005) Adaptation of wheat (Triticum aestivum L.) genotypes and related species to water deficiency. Cereal Research Communications 33, 681–687.

    Article  Google Scholar 

  • Hsiao T.C. (1973) Plants responses to water stress. Annual Review of Plant Physiology and Plant Molecular Biology 24, 519–570.

    CAS  Google Scholar 

  • Hsiao T.C., Acevedo E., Fereres E., Henderson D.W. (1976) Water stress, growth and osmotic adjustment. Philosophical Transaction of the Royal Society London B273, 479–500.

    Article  Google Scholar 

  • Hura T., Grzesiak S., Hura K., Grzesiak M., Rzepka A. (2006) Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. Acta Physiologiae Plantarum 28, 433–443.

    Article  CAS  Google Scholar 

  • Jiang F., Hartung W. (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. Journal of Experimental Botany 59, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q., Roche D., Monaco T.A., Durham S. (2006) Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crop Research 96, 269–278.

    Article  Google Scholar 

  • Johnsen K.H. (1993) Growth and ecophysiological responses of black spruce seedlings to elevated CO2under varied water and nutrient additions. Canadian Journal of Forest Research 23, 1033–1042.

    Article  CAS  Google Scholar 

  • Johnson S.M., Doherty S.J., Croy R.R.D. (2003) Biphasic superoxide generation in potato tubers: a self amplifying response to stress. Plant Physiology 13, 1440–1449.

    Article  CAS  Google Scholar 

  • Jones H.G. (1998) Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany 49, 387–398.

    Article  Google Scholar 

  • Kimball B.A., Kobayashi K., Bindi M. (2002) Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77, 293–368.

    Article  Google Scholar 

  • King R.W., Wardlaw I.F., Evans L.T. (1967) Effect of assimilate utilization on photosynthetic rate in wheat. Planta 77, 261–276.

    Article  Google Scholar 

  • Koyro H.W. (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte (Plantago coronopus L.). Environmental and Experimental Botany 56, 136–146.

    Article  CAS  Google Scholar 

  • Krizkova J., Hejnak V. (2007) The impacts of the aridisation of a habitat on the photosynthetic fixation of energy in spring barley (Hordeum vulgare L.). Cereal Research Communications 35, 1301–1304.

    Article  Google Scholar 

  • Kumar Y. (1994) Vplyv vonkajsich faktorov na tvorbu susiny a akumulaciu energie v rastlinach jacmena jarneho (The Effect of Environmental Factors on Dry Matter Formation and Energy Accumulation in Spring Barley Plants, in Slovak) Ph. D. thesis . Czech University of Agriculture, Prague, Czech Republic.

    Google Scholar 

  • Kurasova I., Kalina J., Stroch M., Urban O., Spunda V. (2003) Response of photosynthetic apparatus of spring barley (Hordeum vulgare L.) to combined effect of elevated CO2 concentration and different growth irradiance. Photosynthetica 41, 209–219.

    Article  CAS  Google Scholar 

  • Larcher W. (2003) Physiological Plant Ecology, 4th ed. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Leakey A.D.B., Uribelarrea M., Ainsworth E.A., Naidu S.L., Rogers A., Ort D.R., Long S.P. (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology 140, 779–790.

    Article  PubMed  CAS  Google Scholar 

  • LeNoble M.E., Spollen W.G., Sharp R.E. (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany 55, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Lewitt J. (1980) Responses of Plants to Enviromental Stresses: Water, Radiation, Salt and Other Stresses. Academic Press, New York, USA.

    Google Scholar 

  • Liang J., Zhang J., Wong M.H. (1997) How do roots control xylem sap ABA concentration in response to soil drying? Plant Cell Physiology 38, 10–16.

    CAS  Google Scholar 

  • Liang J.S., Zhang J.H., Cao, X.Z. (2001) Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physiologia Plantarum 112, 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Liao J.X., Chang J., Wand G.X. (2005) Stomatal density and gas exchange in six wheat cultivars. Cereal Research Communications 33, 719–726.

    Article  Google Scholar 

  • Liu F., Andersen M.N., Jacobsen S.E., Jensen CH.R. (2005) Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environmental and Experimental Botany 54, 33–40.

    Article  CAS  Google Scholar 

  • Loboda T. (2000) Gas exchange of spring barley and wheat grown under mild water shortage. Photosynthetica 38, 429–432.

    Article  Google Scholar 

  • Long S.P., Ainsworth E.A., Leakey A.D.B., Nosberger J., Ort D.R. (2006) Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z.J., Neumann P.M. (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. Journal of Experimental Botany 49, 1945–1952.

    Article  CAS  Google Scholar 

  • Maracchi G., Sirotenko O., Bindi M. (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70, 117–135.

    Article  CAS  Google Scholar 

  • Marcelis L.F.M. (1996) Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany 47, 1281–1291.

    CAS  Google Scholar 

  • Marek M.V. (1998) Dlouhodobe pusobeni atmosfery se zvysenou koncentraci CO2 na fotosyntetickou a produkcni charakteristiku smrku ztepileho (The Longtime Incidence of Atmosphere with Elevated Concentration of CO2 on Photosynthetic and Produce Characteristic of Norway Spruce, in Czech) [D. Sc. Thesis.], Academy of Sciences of the Czech Republic, Brno, Czech Republic.

    Google Scholar 

  • Maroco J.P., Rodrigues M.L., Lopes C., Chaves M.M. (2002) Limitations to leaf photosynthesis in field-grown grapevine under drought-metabolic and modelling approaches. Functional Plant Biology 29, 451–459.

    Article  Google Scholar 

  • Mattsson M., Lundborg T., Larsson M., Larsson C.M. (1992) Nitrogen utilization in N-limited barley during vegetative and generative growth. Journal of Experimental Botany 43, 15–23.

    Article  CAS  Google Scholar 

  • Mc Ainsh M.R., Brownlee C., Hetherington A.M. (1992) Visualizing changes in cytosolic-free Ca2+ during the response of stomatal guard cell to abscisic acid. Plant Cell 4, 1113–1122.

    Article  CAS  Google Scholar 

  • Mc Kersie B.D., Leshem Y.Y. (1994) Stress and Stress Coping in Cultivated Plants. Kluiwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Meloni D.A., Gulotta M.R., Martinez C.A., Oliva M.A. (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology 16, 39–46.

    Article  CAS  Google Scholar 

  • Mitchell R.A.C., Black C.R., Burkart S., Burke J.I., Donnelly A., Temmerman L., Fangmeier A., Mulholland B. J., Theobald J.C., Oijen T.M. (1999) Photosynthetic responses in spring wheat grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACE-wheat’. European Journal of Agronomy 11, 205–214.

    Article  Google Scholar 

  • Moinuddin R., Fischer A., Sayre K.D., Reynolds M.P. (2005) Adjustment in wheat in relation to grain yield under water deficit environments. Agronomy Journal 97, 1062–1071.

    Article  Google Scholar 

  • Morgan J.M. (2000) Increases in grain yield of wheat by breeding for an osmoregulation gene: relationship to water supply and evaporative demand. Australian Journal of Agricultural Research 51, 971–978.

    Article  Google Scholar 

  • Munns R. (2002) Comparative physiology of salt and water stress. Plant, Cell and Environment 25, 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Munns R., Guo J.M., Passioura J.B., Cramer G.R. (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Australian Journal of Plant Physioplogy 27, 949–957.

    Google Scholar 

  • Munns R., James R.A., Lauchli A. (2006) Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  • Muramoto Y., Watanabe A., Nakamura T., Takabe T. (1999) Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 234, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Natr L. (1998) Rostliny, lide a trvale udrzitelny zivot cloveka na Zemi (Plants, People and Sustainable Life of Human on the Earth, in Czech), Karolinum, Prague, Czech Republic.

    Google Scholar 

  • Orcutt D.M., Nielsen E.T. (2000) Physiology of Plants under Stress. John Wiley & Sons Inc., New York, USA.

    Google Scholar 

  • Osorio J., Osorio M.L., Chaves M.M., Pereira J.S. (1998) Water deficits are more important in delaiyng growth than in changing patterns of carbon allocation in Eucalyptus globulus. Tree Physiology 18, 363–373.

    PubMed  Google Scholar 

  • Oukarroum A., El Madidi S., Schansker G., Strasser R.J. (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany 60, 438–446.

    Article  CAS  Google Scholar 

  • Parvaiz A., Satyawati S. (2008) Salt stress and phyto-biochemical response of plants – a review. Plant, Soil and Environment 54, 89–99.

    CAS  Google Scholar 

  • Petr J., Lipavsky J., Hradecka D. (2002) Production process in old and modern spring barley varieties. Bodenkultur 53, 19–27.

    Google Scholar 

  • Piterkova J., Tomankova K., Luhova L., Petrivalsky M. (2005) Oxidativni stres: Lokalizace tvorby aktivnich forem kysliku a jejich degradace v rostlinnem organismu (in Czech). Chemicke Listy 99, 455–466.

    CAS  Google Scholar 

  • Pospisilova J., Synkova H., Rulcova J. (2000) Cytokinins and water stress. Biologia Plantarum 43, 321–328.

    Article  CAS  Google Scholar 

  • Pospisilova J., Vagner M., Malbeck J., Travnickova A., Batkova P. (2005) Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biologia Plantarum 44, 533–540.

    Article  Google Scholar 

  • Przulj N., Momcilovic V. (2003) Dry matter and nitrogen accumulation and use in spring barley. Plant Soil and Environment 49, 36–47.

    Google Scholar 

  • Rizza F., Badeck F.W., Cattivelli L., Lidestri O., Di Fonzo N., Stanca A.M. (2004) Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science 44, 2127–2137.

    Google Scholar 

  • Rulcova J., Pospisilova J. (2001) Effet of benzylaminopurine on rehydration of bean plants after water stress. Biologia Plantarum 44, 75–81.

    Article  CAS  Google Scholar 

  • Saavedra L., Svensson J., Izmendi D., Welin B., Vidal, S. (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant Journal 45, 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Safrankova I., Hejnak V., Stuchlikova K., Ceska, J. (2007) The effect of abscisic acid on rate of photosynthesis and transpiration in six barley genotypes under water stress. Cereal Research Communications 35, 1013–1016.

    Article  CAS  Google Scholar 

  • Sanchez-Urdaneta A.B., Pena-Valdivia C.B., Trejo C., Aguirre J.R., Cardenas E. (2005) Root growth and proline content in drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials. Cereal Research Communications 33, 697–704.

    Article  Google Scholar 

  • Samarah N.H. (2005) Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development 25, 145–149.

    Article  Google Scholar 

  • Sanchez-Diaz M., Garcia J.L., Antolin M.C., Araus J.L. (2002) Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable carbon isotope composition of barley. Photosynthetica 40, 415–421.

    Article  CAS  Google Scholar 

  • Santrucek J. (2003) Vodni rezim rostlin (Water Regime of Plants, in Czech). In: Prochazka S., Machackova I., Krekule J., Sebanek J. (Eds.), Fyziologie Rostlin (Plant Physiology), Academia, Prague, Czech Republic.

    Google Scholar 

  • Selote D.S., Khanna-Chopra R. (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Physiologia Plantarum 121, 462–471.

    Article  CAS  Google Scholar 

  • Sharkey T.D., Seemann J.R. (1989) Mild water stress effects on carbon-reduction-cycle intermediates, ribulose biphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiology 89, 1060–1065.

    Article  PubMed  CAS  Google Scholar 

  • Slafer G.A., Savin R. (1994) Post-anthesis green area duration in a semidwarf and a standard-height wheat cultivar as affected by sink strength. Australian Journal of Agricultural Research 45, 1337–1346.

    Article  Google Scholar 

  • Slafer G.A., Romagosa I., Araus J.L. (1999) Durum wheat and barley yields in antiquity estimated from C-13 discrimination of archaeological grains: a case study from the Western Mediterranean Basin. Australian Journal of Plant Physiology 26, 345–352.

    Article  Google Scholar 

  • Solomon K.F., Labuschagne M.T. (2003) Expression of drought tolerance in F1 hybrids of a diallele cross of durum wheat (Triticum turgidum var. durum L.). Cereal Research Communications 31, 49–56.

    Google Scholar 

  • Spiertz J.H.J., Struik P.C., Laar H.H. (eds.) (2007) Scale and Complexity in Plant System Research. Gene-Plant-Crop Relations, Springer, Dordrecht, Netherlands.

    Google Scholar 

  • Spollen W.G., Sharp R.E., Saab I.N., Wu Y. (1993) Regulation of cell expansion in roots and shoots at low water potentials. In: Smith J.A.C., Griffiths H. (Eds.), Water Deficits: Plant Responses from Cell to Community. BIOS Scientific Publishers, Oxford, UK.

    Google Scholar 

  • Spollen W.G., Tao W., Valliyodan B., Chen K., Hejlek L.G., Kim J.J., LeNoble M.E., Zhu J., Bohnert H.J., Henderson D., Schachtman D.P., Davis G.E., Springer G.K., Sharp R.E., Nguyen H.T. (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biology 8, 32.

    Article  PubMed  CAS  Google Scholar 

  • Stitt M. (1991) Rising CO2levels and their potential significance for carbon flow in photosynthetic cells, Plant Cell and Environment 14, 741–762.

    Article  CAS  Google Scholar 

  • Stitt M., Quick W.P. (1989) Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiologia Plantarum 77, 633–641.

    Article  CAS  Google Scholar 

  • Stoll M., Loveys B., Dry P. (2000) Hormonal changes induced by partial root zone drying of irrigated grapevine. Journal of Experimental Botany 51, 1627–1634.

    Article  PubMed  CAS  Google Scholar 

  • Stuchlikova K., Hejnak V., Safrankova I. (2007) The effect of abscisic acid and benzylaminopurine on photosynthesis and transpiration rates of maize (Zea mays L.) under water stress and subsequent rehydration. Cereal Research Communications 35, 1593–1602.

    Article  CAS  Google Scholar 

  • Subbarao G.V., Johansen C., Slinkard A.E., Nageswara Rao R.C., Saxena N.P., Chauhan Y.S. (1995) Strategies for improwing drought resistance in grain legumes. Critical Revue of Plant Science 14, 469–523.

    Article  Google Scholar 

  • Suprunova T., Krugman T., Distelfeld A., Fahima T., Nevo E., Korol A. (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology 64, 17–34.

    Article  PubMed  CAS  Google Scholar 

  • Svihra J., Talapka S. (1995) Growth-production and accumulation process of some spring wheat-varieties. Rostlinna Vyroba 41, 249–253.

    Google Scholar 

  • Taiz L., Zeiger E. (2006) Plant Physiology. The Benjamin/Cummings Publishing Company, Inc., Sunderland, USA.

    Google Scholar 

  • Takohashi T., Tsuchikashi N., Nakaseko K. (1993) Grain filling mechanisms in spring wheat I (Grain filling phases according to the development of plants organs). Japanese Journal of Crop Science 62, 560–564.

    Google Scholar 

  • Tambussi E.A., Nogues S., Araus J.L. (2005) Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta 221, 446–458.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiology 138, 2337–2343.

    Article  PubMed  CAS  Google Scholar 

  • Tezara W., Mitchell V.J., Driscoll S.D., Lawlor D.W. (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914–917.

    Article  CAS  Google Scholar 

  • Tolley L.C., Strain B.R. (1984) Effects of CO2 enrichment on growth of Liquidambar styraciflua and Pinus tadea seedlings under different irradiance levels. Canadian Journal of Forest Research 14, 343–350.

    Article  Google Scholar 

  • Ulman P., Catsky J., Pospisilova J. (2000) Photosynthetic uptake in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration. Biologia Plantatum 43, 227–237.

    Article  Google Scholar 

  • Uzik M., Zofajova A. (2006) Translocation and accumulation of dry matter in winter wheat genotypes. Cereal Research Communications 34, 1013–1020.

    Article  Google Scholar 

  • Uzik M., Zofajova A. (2007) Translocation of dry matter in ten winter wheat cultivars released in the years 1921–2003. Cereal Research Communications 35, 1583–1592.

    Article  Google Scholar 

  • Veselova S.V., Farkhutdinov R.G., Veselov D.S., Kudoyarova G.R. (2006) Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Russian Journal of Plant Physiology 53, 857–862.

    Google Scholar 

  • Wang Z.L., Fu J.M., He M.R., Yin Y.P., Cao H.M. (1997) Planting density effects on assimilation and partitioning of photosynthesis during grain filling in the late-sown wheat. Photosynthetica 33, 199–204.

    Article  CAS  Google Scholar 

  • Wittenmyer L., Merbach W. (2005) Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahrung und Bodenkunde 168, 531–540.

    Article  CAS  Google Scholar 

  • Wong S.C. (1990) Elevated atmospheric partial pressure of CO2 and plant growth. Photosynthesis Research 23, 171–180.

    Article  CAS  Google Scholar 

  • Wullschleger S.D., Norby R.J., Hendrix D.L. (1992) Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology 10, 21–31.

    PubMed  CAS  Google Scholar 

  • Zhang R.X., Gao K. (1993) The characteristics of leaf photosynthate export in Triticum boeoticum and wheat cultivar Ningmai No. 3. Journal of Nanjing Agriculturae University 16, 429–435.

    Google Scholar 

Download references

Acknowledgements

Supported by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. 6046070901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Hejnak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hejnak, V., Skalicky, M., Hnilicka, F., Novak, J. (2009). Responses of Cereal Plants to Environmental and Climate Changes – A Review. In: Lichtfouse, E. (eds) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Sustainable Agriculture Reviews, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2716-0_6

Download citation

Publish with us

Policies and ethics