Skip to main content

Quantitative Structure–Activity Relationships (QSARs) in the European REACH System: Could These Approaches be Applied to Nanomaterials?

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

The European Union REACH system governs inventory of chemicals that are produced in large quantities (more than 1 ton per year). Since nanomaterials are becoming a distinct group of chemicals, differing from bulk substances by physicochemical properties and toxicity, the registration requirements for them should be reviewed and adapted according to their specificity. One of the promising computational techniques that can assist in obtaining required characteristics of the nanomaterials is (quantitative) structure–activity ((Q)SAR) methodology. This chapter reviews the current status of the nanomaterials under the REACH regulation and discusses the advances and challenges of (Q)SAR development for nanomaterials. Though this approach has been mainly applied to obtain information on physicochemical properties of selected nanospecies, its application to predict their toxicity will require genuine collaboration between modelers and experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, and amemding Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Official Journal of the European Union, L 396/1; The European Parliament and the Council of the European Union, Brussels, 2006

    Google Scholar 

  2. Guidance on registration, Guidance for the implementation of REACH; European Chemicals Agency, Helskinki, 2008

    Google Scholar 

  3. T.W. Schultz et al., Quantitative structure-activity relationships (QSARS) in toxicology: A historical perspective. THEOCHEM 622, 1–22 (2003)

    Article  CAS  Google Scholar 

  4. T.W. Schultz et al., The present status of QSAR in toxicology. THEOCHEM 622, 23–38 (2003)

    Article  CAS  Google Scholar 

  5. R. Todeschini et al., Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000)

    Book  Google Scholar 

  6. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999)

    Google Scholar 

  7. G.B. Rocha et al., RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I, J. Comput. Chem. 27, 1101–1111 (2006)

    Article  CAS  Google Scholar 

  8. J.J.P. Stewart, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)

    Article  CAS  Google Scholar 

  9. T. Puzyn et al., Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? J. Chem. Inf. Model. 48, 1174–1180 (2008)

    Article  CAS  Google Scholar 

  10. T.I. Opera et al., 3D-QSAR of human immunodeficiency virus (I) protease inhibitors. III. Interpretation of CoMFA results. Drug Des. Discov. 12, 29–51 (1994)

    CAS  Google Scholar 

  11. M. Ravi et al., 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling. J. Chem. Inf. Comput. Sci. 41, 1587–1604 (2001)

    CAS  Google Scholar 

  12. O. Mekenyan et al., In silico modelling of hazard endpoints: Current problems and perspectives. SAR QSAR Environ. Res. 14, 361–371 (2003)

    Article  CAS  Google Scholar 

  13. V.E. Kuz’min et al., Hierarchic system of QSAR models (1D-4D) on the base of simplex representation of molecular structure. J. Mol. Model. 11, 457–467 (2005)

    Article  Google Scholar 

  14. M.T.D. Cronin et al., Pitfalls in QSAR. THEOCHEM 622, 39–51 (2003)

    Article  CAS  Google Scholar 

  15. Guidance Document on the Validation of (Quantitative) Structure Activity Relationship [(Q)SAR] Models, No. 69; OECD Series on Testing and Assessment; Organisation of Economic Cooperation and Development: Paris, France, 2007. http://www.oecd.org. Accessed May 2008

  16. P. Gramatica, Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 26, 694–670 (2007)

    Article  CAS  Google Scholar 

  17. JRC, European Chemicals Bureau, Computational Toxicology Group. http://ecb.jrc.it/qsar/. Accessed May 2008

  18. L. Eriksson et al., Methods for reliability and uncertainty assessment and applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 111, 1361–1375 (2003)

    Article  CAS  Google Scholar 

  19. T.I. Netzeva et al., Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships – The report and recommendations of ECVAM Workshop 52. Altern. Lab. Anim. 33, 155–173 (2005)

    CAS  Google Scholar 

  20. A. Golbraikh et al., Beware of q2!. J. Mol. Graph. Model. 20, 269–276 (2002)

    Article  CAS  Google Scholar 

  21. T. Puzyn et al., How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine? Environ. Sci. Technol. 42, 5189–5195 (2008)

    Article  CAS  Google Scholar 

  22. K. Thomas et al., Research strategies for safety evaluation of nanomaterials, Part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci. 92, 23–32 (2006)

    Article  CAS  Google Scholar 

  23. Market outlook for nanomaterials for electronics applications: Semiconductors, solar displays, sensors, RFID, Lighting The Information Network: New Tripoli, PA, 2008. http://www.theinformationnet.com

  24. K.J. Klabunde, Introduction to Nanotechnology, in Nanoscale Materials in Chemistry, ed. by K.J. Klabunde (Wiley Interscience, New York, 2001)

    Chapter  Google Scholar 

  25. A.G. Mamalis, Recent advances in nanotechnology. J. Mater. Process. Technol. 181, 52–58 (2007)

    Article  CAS  Google Scholar 

  26. P.J. Borm et al., The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 3, 11 (2006)

    Article  Google Scholar 

  27. M.R. Wiesner et al., Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006)

    Article  CAS  Google Scholar 

  28. S. Zuin et al., Effect-Oriented Physicochemical Characterization of Nanomaterials, in Nanonotoxicology: Characterization, Dosing and Health Effects, ed. by N.A. Monteiro-Riviere, C.L. Tran (Informa Healthcare USA, New York, 2007)

    Google Scholar 

  29. D.Y. Lyon et al., Bacterial cell association and antimicrobial activity of a C-60 water suspension. Environ. Toxicol. Chem. 24, 2757–2762 (2005)

    Article  CAS  Google Scholar 

  30. C.M. Sayes et al., The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4, 1881–1887 (2004)

    Article  CAS  Google Scholar 

  31. A. Magrez et al., Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006)

    Article  CAS  Google Scholar 

  32. F.R. Tian et al., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20, 1202–1212 (2006)

    Article  CAS  Google Scholar 

  33. T. Gordon et al., Pulmonary effects of inhaled zinc-oxide in human-subjects, guinea-pigs, rats, and rabbits. Am. Ind. Hyg. Assoc. J. 53, 503–509 (1992)

    CAS  Google Scholar 

  34. B. Rehn et al., Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: Untreated and surface treated. Toxicol. Appl. Pharmacol. 189, 84–95 (2003)

    Article  CAS  Google Scholar 

  35. Y. Chen et al., Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenesis in rats. Toxicol. Ind. Health 20, 21–27 (2004)

    Article  CAS  Google Scholar 

  36. Towards a European strategy for nanomaterials, COM(2004) 338; European Commission: Brussels, 2004

    Google Scholar 

  37. Nanosciences and nanotechnologies: An action plan for Europe 2005 – 2009, COM(2005) 243; European Commission, Brussels, 2005

    Google Scholar 

  38. Communication from the Commission to the European Parliament, The Council and the European Economic and Social Committee: Regulatory aspects of nanomaterials, SEC(2008) 2036; Commision of the European Communities, Brussel, 2008

    Google Scholar 

  39. ETUC Resolution on nanotechnologies and nanomaterials, European Trade Union Confederation, Brussels, 2008

    Google Scholar 

  40. The appropriateness of the risk assessment methodology in accordance with the Technical Guidance Documents for new and existing substances for assessing the risks of nanomaterials, European Commision, Scientific Committee on Emerging and Newly-Identified Health Risks, Brussels, 2007

    Google Scholar 

  41. I.P. Suzdalev, Size effects and intercluster interactions in nanosystems. Zh. Obshch. Khim 72, 611–616 (2002)

    Google Scholar 

  42. V.Y. Shevchenko et al., The structural diversity of the nanoworld. Glass Phys. Chem. 29, 577–582 (2003)

    Article  CAS  Google Scholar 

  43. A.D. Maynard et al., Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology 1, 26–41 (2007)

    Article  CAS  Google Scholar 

  44. A. Worth, Computational nanotoxicology – towards a structure-activity based paradigm for investigationg the activity of nanoparticles. In Icon Workshop. Towards Predicting Nano-Bio Interactions, Zurich, Switzerland, 2007

    Google Scholar 

  45. G. Oberdörster et al., for ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2, 8, (2005)

    Google Scholar 

  46. M.A. Poggi et al., Scanning probe microscopy. Anal. Chem. 76, 3429–3443 (2004)

    Article  CAS  Google Scholar 

  47. M.K. Shukla et al., A density functional theory study on the effect of shape and size on the ionization potential and electron affinity of different carbon nanostructures. Chem. Phys. Lett. 428, 317–320 (2006)

    Article  CAS  Google Scholar 

  48. T.M. Simeon et al., Ab initio quantum chemical studies of fullerene molecules with substituents C59X [X=Si, Ge, Sn], C59X [X=B, Al, Ga, In], and C59X+[N, P, As, Sb]. Int. J. Quantum Chem. 105, 429–436 (2005)

    Article  CAS  Google Scholar 

  49. Z.W. Qu et al., Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n = 1–9. J. Phys. Chem. B 110, 8998–9007 (2006)

    Article  CAS  Google Scholar 

  50. H.J. Zhai et al., Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2)n (n = 1–10) using photoelectron spectroscopy. J. Am. Chem. Soc. 129, 3022–3026 (2007)

    Article  CAS  Google Scholar 

  51. L.M. Kukreja et al., Variable band gap ZnO nanostructures grown by pulsed laser deposition. J. Cryst. Growth 268, 531–535 (2004)

    Article  CAS  Google Scholar 

  52. J.L. Faulon et al., The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 43, 707–720 (2003)

    CAS  Google Scholar 

  53. J.L. Faulon et al., The signature molecular descriptor. 2. Enumerating molecules from their extended valence sequences. J. Chem. Inf. Comput. Sci. 43, 721–734 (2003)

    CAS  Google Scholar 

  54. C.J. Churchwell et al., The signature molecular descriptor. 3. Inverse-quantitative structure-activity relationship of ICAM-1 inhibitory peptides. J. Mol. Graph. Model. 22, 263–273 (2004)

    Article  CAS  Google Scholar 

  55. J.L. Faulon et al., The signature molecular descriptor. 4. Canonizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci. 44, 427–436 (2004)

    CAS  Google Scholar 

  56. I. Gutman et al., The graph of atomic orbitals and its basic properties. 1. Wiener index. MATCH Commun. Math. Comput. Chem. 53, 215–224 (2005)

    CAS  Google Scholar 

  57. I. Gutman et al., The graph of atomic orbitals and its basic properties. 2. Zagreb indices. MATCH Commun. Math. Comput. Chem. 53, 225–230 (2005)

    CAS  Google Scholar 

  58. A.P. Toropova et al., QSPR modeling mineral crystal lattice energy by optimal descriptors of the graph of atomic orbitals. Chem. Phys. Lett. 428, 183–186 (2006)

    Article  CAS  Google Scholar 

  59. A.A. Toropov et al., An application of graphs of atomic orbitals for QSAR modeling the toxicity of metal oxides. Chemosphere, 2009 (submitted)

    Google Scholar 

  60. A. Helland et al., Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115, 1125–1131 (2007)

    Article  CAS  Google Scholar 

  61. K. Donaldson et al., Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22 (2006)

    Article  CAS  Google Scholar 

  62. K. Donaldson et al., Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2, 10 (2005)

    Article  Google Scholar 

  63. R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006)

    Article  Google Scholar 

  64. T.J. Brunner et al., In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006)

    Article  CAS  Google Scholar 

  65. L.K. Limbach et al., Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370–9376 (2005)

    Article  CAS  Google Scholar 

  66. A.A. Toropov et al., Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector. Comput. Biol. Chem. 31, 127–128 (2007)

    Article  CAS  Google Scholar 

  67. A.A. Toropov et al., A new approach to the characterization of nanomaterials: Predicting Young’s modulus by correlation weighting of nanomaterials codes. Chem. Phys. Lett. 433, 125–129 (2007)

    Article  Google Scholar 

  68. D. Martin et al., QSPR modeling of solubility of polyaromatic hydrocarbons and fullerene in 1-octanol and n-heptane. J. Phys. Chem. B 111, 9853–9857 (2007)

    Article  CAS  Google Scholar 

  69. A.R. Katritzky et al., CODESSA PRO. COmprehensive DEscriptors for Structural and Statistical Analysis, University of Florida, USA, 2001–2005. http://www.codessa-pro.com. Accessed June 2007

  70. H. Liu et al., Accurate quantitative structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. J. Phys. Chem. B 109, 20565–20571 (2005)

    Article  CAS  Google Scholar 

  71. N. Sivaraman et al., QSPR modeling for solubility of fullerene (C60) in organic solvents. J. Chem. Inf. Comput. Sci. 41, 1067–1074 (2001)

    CAS  Google Scholar 

  72. A.A. Toropov et al., QSPR study on solubility of fullerene C60 in organic solvents using optimal descriptors calculated with SMILES. Chem. Phys. Lett. 441, 119–122 (2007)

    Article  CAS  Google Scholar 

  73. T. Petrova et al., Modeling of fullerene C60 solubility in organic solvents: The use of quantum-chemical and topological descriptors in QSPR study. J. Nanopart. Res., 2009 (submitted)

    Google Scholar 

  74. A.A. Toropov et al., QSAR modeling toxicity of nanosized oxides towards E. coli bacteria using the SMILES-based optimal descriptors. Chem. Biol. Drug Des., 2009 (submitted)

    Google Scholar 

Download references

Acknowledgement

The authors thank the NSF CREST Interdisciplinary Nanotoxicity Center (grant number HRD-0833178) and High Performance Computational Design of Novel Materials (HPCDNM) – Contract no. W912HZ-07-C-0071 funded by the Department of Defense through the U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi for their support. This project was also partially financed by the European MF EOG funds. Tomasz Puzyn thanks the Foundation for Polish Science for support through the HOMING Program. The project was co-financed by the Polish Ministry of Science and Higher Education (grant no. DS/8430-4-0171-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Puzyn, T., Leszczynska, D., Leszczynski, J. (2009). Quantitative Structure–Activity Relationships (QSARs) in the European REACH System: Could These Approaches be Applied to Nanomaterials?. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_9

Download citation

Publish with us

Policies and ethics