Skip to main content

σ-Bond Prevents Short π-Bonds: A Detailed Theoretical Study on the Compounds of Main Group and Transition Metal Complexes

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

The unusual shortness of the bond length in several main group and transition metal compounds is explained on the basis of their π-alone bonding. The detailed electronic structure calculation on C2, HBBH, and Fe2(CO)6 shows that each of them has two π-alone bonds (unsupported by an underlying σ-bond), whereas B2 has two-half π-bonds. The C–C bond length in C2 is 1.240 Å, shorter than any C–C double (σ + π, in C2H4, C–C=1.338 Å) bonded species. The B–B bond distance in B2 (1.590 Å, two half-π bonds) is shorter than any B–B single σ-bonded (~1.706 Å) species. The calculated Fe–Fe bond distance of 2.002 Å in Fe2(CO)6 is shorter than those of some experimentally known M–M single bonded compounds in the range of 2.904–3.228 Å. Here, our detailed studies on the second and third row diatomics (five, six, seven and eight valence electrons species) and transition metal complexes show that π-alone bonds left to themselves are shorter than σ-bonds; in many ways, σ-bonds prevent π-bonds from adopting their optimal shorter distances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.J.H. Vannes, A. Vos, Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determinations of two modifications of ethane. Acta Cryst. B 34, 1947–1956 (1978)

    Article  Google Scholar 

  2. G.J.H. Vannes, A. Vos, Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. III. Single-crystal X-ray structure determination of ethylene at 85 K. Acta Cryst. B 35, 2593–2601 (1979)

    Article  CAS  Google Scholar 

  3. R.K. Mcmullan et al., Structures of cubic and orthorhombic phases of acetylene by single-crystal neutron diffraction. Acta Cryst. B 48, 726–731 (1992)

    Article  Google Scholar 

  4. F.A. Cotton et al., The crystal and molecular structure of dipotassium octachlorodirhenate(III) dihydrate, K2[Re2Cl8]2H2O. Inorg. Chem. 4, 330–333 (1965)

    Article  CAS  Google Scholar 

  5. B.O. Roos et al., Reaching the maximum multiplicity of the covalent chemical bond. Angew. Chem. Int. Ed. 46, 1469–1472 (2007)

    Article  CAS  Google Scholar 

  6. G. Frenking, R. Tonner, Theoretical chemistry: The six-bond bound. Nature 446, 276–277 (2007)

    Article  CAS  Google Scholar 

  7. T. Nguyen et al., Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310, 844–847 (2005)

    Article  CAS  Google Scholar 

  8. P.J. Bruna, Theoretical prediction of the potential curves for the lowest-lying states of the isovalent diatomics CN+, Si2, SiC, CP+, and SiN+ using the ab initio MRD-CI method. J. Chem. Phys. 72, 5437–5445 (1980)

    Article  CAS  Google Scholar 

  9. J.M. Galbraith et al., π-Bonding in second and third row molecules: Testing the strength of linus’s blanket. Chem. Eur. J. 6, 2425–2434 (2000)

    Article  CAS  Google Scholar 

  10. L. Pauling, The Nature of the Chemical Bond, 2nd edn. (Cornell University Press, Ithaca, NY, 1945)

    Google Scholar 

  11. P. Pyykkö et al., Triple-bond bovalent radii. Chem. Eur. J. 11, 3511–3520 (2005)

    Article  CAS  Google Scholar 

  12. K. Raghavachari et al., A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157, 479–483 (1989)

    Article  CAS  Google Scholar 

  13. R.J. Bartlett et al., Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods. Chem. Phys. Lett. 165, 513–522 (1990)

    Article  CAS  Google Scholar 

  14. G.E. Scuseria, The open-shell restricted Hartree-Fock singles and doubles coupled-cluster method including triple excitations CCSD (T): Application to C +3 . Chem. Phys. Lett. 176, 27–35 (1991)

    Article  CAS  Google Scholar 

  15. M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc. (Wallingford CT, 2004)

    Google Scholar 

  16. J.A. Pople et al., Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 87, 5968–5975 (1987)

    Article  CAS  Google Scholar 

  17. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  18. C. Lee, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  19. A.E. Reed et al., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

  20. P. Rademacher, Photoelectron spectra of cyclopropane and cyclopropene compounds. Chem. Rev. 103, 933–976 (2003)

    Article  CAS  Google Scholar 

  21. J.G. Fox, G. Hertzberg, Analysis of a new band system of the C2 molecule. Phys. Rev. 52, 638–643 (1937)

    Article  CAS  Google Scholar 

  22. R.S. Mulliken, Note on electronic states of diatomic carbon, and the carbon–carbon bond. Phys. Rev. 56, 778–781 (1939)

    Article  CAS  Google Scholar 

  23. E.A. Ballik, D.A. Ramsay, Ground state of the C2 molecule. J. Chem. Phys. 31, 1128–1128 (1959)

    Article  CAS  Google Scholar 

  24. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure . IV. Constants of Diatomic Molecules (Van Nostrand-Reinhold Co, New York, 1979)

    Google Scholar 

  25. L.B. Knight et al., Laser sputtering generation of B2 for ESR matrix isolation studies: Comparison with ab initio CI theoretical calculations. J. Am. Chem. Soc. 109, 3521–3525 (1987)

    Article  CAS  Google Scholar 

  26. P.P. Power, π-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463–3504 (1999)

    Article  CAS  Google Scholar 

  27. G.L. Gutsev et al., Structure and stability of the AlX and AlX species. J. Chem. Phys. 110, 2928–2935 (1999)

    Article  CAS  Google Scholar 

  28. M. Pelegrini et al., MRSDCI study of the two lower-lying doublet electronic states of the BeB, MgB, and CaB molecules. Int. J. Quantum Chem. 95, 205–212 (2003)

    Article  CAS  Google Scholar 

  29. P.J. Bruna, F. Grein, Hyperfine coupling constants and electron-spin g-factors of B +2 , Al +2 , Ga +2 , BAl+, BGa+, and AlGa+: An ab initio study. J. Chem. Phys. 117, 2103–2111 (2002)

    Article  CAS  Google Scholar 

  30. P.J. Bruna et al., Beryllium-beryllium bonding. 1. Energetics of protonation and hydrogenation of beryllium dimer and its ions. J. Phys. Chem. 96, 6269–6278 (1992)

    Article  CAS  Google Scholar 

  31. L.G. Kaplan et al., Nondipole bound anions: Be 2 and Be 3 . J. Chem. Phys. 117, 3687–3693 (2002)

    Article  CAS  Google Scholar 

  32. R. Middleton, J. Klein, Production of metastable negative ions in a cesium sputter source: Verification of the existence of N 2 and CO. Phys. Rev. A 60, 3786–3799 (1999)

    Article  CAS  Google Scholar 

  33. A. Moezzi et al., Enhanced thermal stability in organodiborane(4) compounds: Synthesis and structural characterization of MeO(Mes)BB(Mes)OMe, Mes2BB(Mes)OMe, Mes2BB(Mes)Ph, and Mes2BB(Mes)CH2SiMe3 (Mes = 2,4,6-Me3C6H2). Organometallics 11, 2383 (1992)

    Article  CAS  Google Scholar 

  34. J. Kalcher, A.F. Sax, Ab initio investigation on the negative ion states of the X–Y (X = C, Si; Y = Be, Mg) diatomics. J. Mol. Struct.: THEOCHEM 498, 77–85 (2000)

    Article  CAS  Google Scholar 

  35. S. Midda, A.K. Das, Spectroscopic constants and molecular properties of diatomic carbides. J. Mol. Spectroscopy 224, 1–6 (2004)

    Article  CAS  Google Scholar 

  36. T.L. Windus, M.S. Gordon, π-Bond strengths of H2X:YH2: X = Ge, Sn; Y = C, Si, Ge, Sn. J. Am. Chem. Soc. 114, 9559–9568 (1992)

    Article  CAS  Google Scholar 

  37. L.B. Knight et al., Laser vaporization generation of the SiB and SiAl radicals for matrix isolation electron spin resonance studies; comparison with theoretical calculations and assignment of their electronic ground states as X 4Σ. J. Chem. Phys. 98, 6749–6757 (1993)

    Article  CAS  Google Scholar 

  38. D. Tzeli, A. Mavridis, First-principles investigation of the boron and aluminum carbides BC and ALC and their anions BC- and AlC-1. J. Phys. Chem. A 105, 1175–1184 (2001)

    Article  CAS  Google Scholar 

  39. S.P. Karna, F. Grein, High-multiplicity states of BN and BN+ obtained by configuration-interaction studies. Chem. Phys. Lett. 144, 149–152 (1988)

    Article  CAS  Google Scholar 

  40. B. Miguel et al., Theoretical study of low-lying electronic states of BP molecule. Chem. Phys. Lett. 381, 720–724 (2003)

    Article  CAS  Google Scholar 

  41. Y. Xie et al., Binuclear homoleptic iron carbonyls: Incorporation of formal iron-iron single, double, triple, and quadruple bonds, Fe2(CO) x (x = 9, 8, 7, 6). J. Am. Chem. Soc. 122, 8746–8761 (2000)

    Article  CAS  Google Scholar 

  42. R. Binachi et al., Experimental electron density analysis of MN2(CO)10: Metal–metal and metal-ligand bond characterization. Inorg. Chem. 39, 2360–2366 (2000)

    Article  CAS  Google Scholar 

  43. R.D. Adams et al., Unusual structural and magnetic resonance properties of dicyclopentadienylhexacarbonyldichromium. J. Am. Chem. Soc. 96, 749–754 (1974)

    Article  CAS  Google Scholar 

  44. R.D. Adams et al., Molecular structures and barriers to internal rotation in bis (eta. 5-cyclopentadienyl)hexacarbonylditungsten and its molybdenum analog. Inorg. Chem. 13, 1086–1090 (1974)

    Article  CAS  Google Scholar 

  45. V. Pophristic, L. Goodman, Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature 411, 565–568 (2001)

    Article  CAS  Google Scholar 

  46. F.M. Bickelhaupt, E.J. Baerends, The case for steric repulsion causing the staggered conformation of ethane. Angew. Chem. Int. Edn. Engl. 42, 4183–4188 (2003)

    Article  CAS  Google Scholar 

  47. F. Weinhold, Rebuttal to the Bickelhaupt-Baerends case for steric repulsion causing the staggered conformation of ethane. Angew. Chem. Int. Edn. Engl. 42, 4188–4194 (2003)

    Article  CAS  Google Scholar 

  48. M.J. Chetcuti et al., Bis[benzylbis(dimethylamido)molybdenum] and -tungsten (M.tplbond.M) compounds and their reactions with carbon dioxide and 1,3-diaryltriazenes. A radical difference. J. Am. Chem. Soc. 104, 4684–4686 (1982)

    Article  CAS  Google Scholar 

  49. M.H. Chisholm, J.F. Corning, J.C. Huffman, The molybdenum-molybdenum triple bond. 14. Preparation and characterization of mixed alkoxy-thiolate compounds of formula Mo2(OR)2(SAr)4. Inorg. Chem. 23, 754–757 (1984)

    Article  CAS  Google Scholar 

  50. T.M. Gilbert et al., Synthesis and electronic properties of triply bonded hexakis(fluoroalkoxy)dimolybdenum complexes. Structure of Mo2[OCMe(CF3)2]6 and investigation of the nature of the frontier orbitals in triply bonded M2X6 compounds. Inorg. Chem. 31, 3438–3444 (1992)

    Article  CAS  Google Scholar 

  51. M.H. Chisholm et al., The tungsten-tungsten triple bond. 5. Chlorine atom substitution reactions involving dichlorotetrakis(diethylamido)ditungsten. Preparation, properties, structures, and dynamical solution behavior of bis(trimethylsilylmethyl)-, dibromo- and diiodotetrakis(diethylamido)ditungsten. Inorg. Chem. 16, 320–328 (1977)

    Article  CAS  Google Scholar 

  52. J.P. Kenny et al., Cobalt–cobalt multiple bonds in homoleptic carbonyls? Co2(CO) x (x = 5–8) structures, energetics, and vibrational spectra. Inorg. Chem. 40, 900–911 (2001)

    Article  CAS  Google Scholar 

  53. R.F.W. Bader, Atoms in Molecules: A quantum Theory (Clarendon Press, Oxford, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eluvathingal D. Jemmis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pathak, B., Umayal, M., Jemmis, E.D. (2009). σ-Bond Prevents Short π-Bonds: A Detailed Theoretical Study on the Compounds of Main Group and Transition Metal Complexes. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_7

Download citation

Publish with us

Policies and ethics