Skip to main content

Chirality and Chiral Recognition

  • Chapter
  • First Online:

Abstract

This review summarizes the literature survey on chiral recognition from a theoretical view point. Nevertheless, experimental results in the gas phase are reported when they are relevant for the theoretical calculations. The review is divided into the following sections: general considerations; experiment vs. theory; pure theoretical results; solvent effects; metals as glue; optical rotatory power; and conclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Ruch, Algebraic aspects of the chirality phenomenon in chemistry. Acc. Chem. Res. 5, 49–56 (1972)

    CAS  Google Scholar 

  2. P.W. Fowler, Quantification of chirality: Attempting the impossible. Symmetry Cult. Sci. 16, 321–334 (2003)

    Google Scholar 

  3. R.B. King, Chirality and handedness: The Ruch “shoe-potato” dichotomy in the right-left classification problem. Ann. N.Y. Acad. Sci. 988, 158–170 (2003)

    CAS  Google Scholar 

  4. E. Witten, High-energy physics: The mass question. Nature 415, 969–971 (2002)

    CAS  Google Scholar 

  5. R.G. Kostyanovsky, Louis Pasteur did it for us especially. Mendeleev Commun. 13, 85–90 (2003)

    Google Scholar 

  6. J. Zhang et al., Chiral nanotechnology. Chirality 17, 404–420 (2005)

    CAS  Google Scholar 

  7. B.A. Grzybowski, G.M. Whitesides, Dynamic aggregation of chiral spinners. Science 296, 718–721 (2002)

    CAS  Google Scholar 

  8. Y.J. He et al., Effect of earth’s orbital chirality on elementary particles and unification of chiral asymmetries in life on different levels. Med. Hypotheses 54, 783–785 (2000)

    CAS  Google Scholar 

  9. S. Capozziello, A. Lattanzi, Spiral galaxies as chiral objects, astrophys. Space Sci. 301, 189–193 (2006)

    Google Scholar 

  10. IUPAC Gold Book. http://goldbook.iupac.org/index-alpha.html

  11. J.F. LeMaréchal, Can a non-chiral object be made of two identical chiral moieties? J. Chem. Ed. 85, 433–435 (2008)

    Google Scholar 

  12. K. Mislow, Fuzzy Restrictions and Inherent Uncertainties in Chiral Studies, in Fuzzy Logic in Chemistry, ed. by D.H. Rouvray (Academic, San Diego, 1997), pp. 65–90

    Google Scholar 

  13. M. Avalos et al., Absolute asymmetric synthesis under physical fields: Facts and fictions. Chem. Rev. 98, 2391–2404 (1998)

    CAS  Google Scholar 

  14. S.F. Mason, Biomolecular homochirality. Chem. Soc. Rev. 17, 347–359 (1988)

    CAS  Google Scholar 

  15. M. Avalos et al., Chiral autocatalysis: Where stereochemistry meets the origin of life. Chem. Commun. 11, 887–892 (2000)

    Google Scholar 

  16. M. Avalos et al., From parity to chirality: Chemical implications revisited. Tetrahedron Asymm. 11, 2845–2874 (2000)

    CAS  Google Scholar 

  17. G. Zadel et al., Absolute asymmetric syntheses in a static magnetic field. Angew. Chem. Int. Ed. 33, 454–456 (1994)

    Google Scholar 

  18. C. Foces-Foces et al., Complete energy profile of a chiral propeller compound: Tris-(2′-methylbenzimidazol-1′-yl)methane. Tetrahedron Asymm. 1, 65–86 (1990)

    CAS  Google Scholar 

  19. J. Elguero et al., Failed attempt to induce chirality using a magnetic field: The case of chiral helicity of tris(2-methylbenzimidazol-1-yl) methane. Heterocycl. Commun. 1, 102–103 (1994)

    Google Scholar 

  20. B.L. Feringa et al., Attempts to carry out enantioselective reactions in a static magnetic field. Angew. Chem. Int. Ed. Engl. 33, 1458–1459 (1994)

    Google Scholar 

  21. G. Kaupp, T. Marquardt, Absolute asymmetric synthesis solely under the influence of a static homogeneous magnetic field? Angew. Chem. Int. Ed. Engl. 33, 1459–1461 (1994)

    Google Scholar 

  22. L.D. Barron, Can a magnetic field induce absolute asymmetric synthesis? Science 266, 1491–1492 (1994)

    CAS  Google Scholar 

  23. W.H.-P. Thiemann, Homochirality of the evolution of biospheres. Biol. Sci. Space 12, 73–77 (1998)

    CAS  Google Scholar 

  24. I. Alkorta, J. Elguero, Self-discrimination of enantiomers in hydrogen-bonded dimers. J. Am. Chem. Soc. 124, 1488–1493 (2002)

    CAS  Google Scholar 

  25. I. Alkorta, J. Elguero, Discrimination of hydrogen-bonded complexes with axial chirality. J. Chem. Phys. 117, 6463–6468 (2002)

    CAS  Google Scholar 

  26. O. Picazo et al., Large chiral recognition in hydrogen-bonded complexes and proton transfer in pyrrolo[2, 3-b]pyrrole dimers as model compounds. J. Org. Chem. 68, 7485–7489 (2003)

    CAS  Google Scholar 

  27. I. Alkorta, J. Elguero, Theoretical study of peptide model dimers. Homo versus heterochiral complexes. Theochem 680, 191–198 (2004)

    CAS  Google Scholar 

  28. O. Picazo et al., Dimers of 1, 8a-dihydro-1, 8-naphthyridine derivatives as models of chiral self-recognition. Struct. Chem. 16, 339–345 (2005)

    CAS  Google Scholar 

  29. O. Picazo et al., Bonding properties related with chiral discrimination in dinuclear metal complexes of group 10. Eur. J. Inorg. Chem. 2, 324–332 (2007)

    Google Scholar 

  30. O. Picazo et al., Chiral recognition in phosphinic acids dimers. J. Phys. Org. Chem. 18, 491–497 (2005)

    CAS  Google Scholar 

  31. I. Alkorta et al., Effect of fluoro substituents and central atom nature on chiral derivatives of bisdiphenylborates and isoelectronic structures. Tetrahedron. Asymm. 16, 755–760 (2005)

    CAS  Google Scholar 

  32. I. Alkorta et al., Chiral recognition in cyclic α-hydroxy carbonyl compounds: A theoretical study. J. Phys. Chem. A 109, 3262–3266 (2005)

    CAS  Google Scholar 

  33. I. Alkorta et al., Chiral discrimination in lithium complexes of bis(5H-pyrroles) and bis(oxazolines). J. Phys. Chem. A 109, 9573–9577 (2005)

    CAS  Google Scholar 

  34. I. Alkorta, J. Elguero, An atoms in molecules analysis of the differences between meso and chiral forms of oxirane and cyclobutene derivatives. Chem. Phys. Lett. 417, 367–370 (2006)

    CAS  Google Scholar 

  35. I. Alkorta et al., Self-aggregation as a source of chiral discrimination. Chem. Phys. Lett. 427, 289–294 (2006)

    CAS  Google Scholar 

  36. I. Alkorta et al., Chiral discrimination in binuclear square planar metal complexes of group 10. Inorg. Chem. Commun. 9, 712–715 (2006)

    Google Scholar 

  37. I. Alkorta et al., Chiral recognition in self-complexes of tetrahydroimidazo[4, 5-d]imidazole derivatives: From dimers to heptamers. J. Phys. Chem. A 110, 2259–2268 (2006)

    CAS  Google Scholar 

  38. I. Alkorta et al., Chiral recognition in diaziridine clusters and the problem of racemization waves. J. Phys. Chem. A 111, 1096–1103 (2007)

    CAS  Google Scholar 

  39. K. Zborowski et al., A theoretical study of chiral recognition in bis[amino (phenyl) methanol] chromium(0) complexes. Pol. J. Chem. 81, 621–629 (2007)

    CAS  Google Scholar 

  40. K. Zborowski et al., Enantiodifferentiation in protonation processes: A theoretical study. J. Mol. Struct. Theochem 811, 37–44 (2007)

    CAS  Google Scholar 

  41. M. Sánchez et al., Atomic partition of the optical rotatory power of methylhydroperoxide. J. Chem. Phys. 128, 064318-1–064318-8 (2008)

    Google Scholar 

  42. M. Suhm (ed.), Spectroscopic probes of molecular recognition. Phys. Chem. Chem. Phys. 9(32), 4443 (2007)

    Google Scholar 

  43. P. Le Guennec, On the concept of chirality. J. Math. Chem. 23, 429–439 (1998)

    Google Scholar 

  44. P. Guennec, Towards a theory of molecular recognition. Theor. Chem. Acc. 101, 151–158 (1999)

    Google Scholar 

  45. P. Le Guennec, Two-dimensional theory of chirality. I. Absolute chirality. J. Math. Phys. 41, 5954–5985 (2000)

    Google Scholar 

  46. P. Le Guennec, Two-dimensional theory of chirality. II. Relative chirality and the chirality of complex fields. J. Math. Phys. 41, 5986–6006 (2000)

    Google Scholar 

  47. S. Capozziello, A. Lattanzi, Algebraic structure of central molecular chirality starting from Fischer projections. Chirality 15, 466–471 (2003)

    CAS  Google Scholar 

  48. M. Petitjean, Chirality and symmetry measures: A transdisciplinary review. Entropy 5, 271–312 (2003)

    CAS  Google Scholar 

  49. D.M. Du et al., Chiral discrimination in the hydrogen bonding complexes of the R–OOH (R=H and CH3) dimer. Chem. Phys. Lett. 392, 162–167 (2004)

    CAS  Google Scholar 

  50. M.A. Mateos-Timoneda et al., Supramolecular chirality of self-assembled systems in solution. Chem. Soc. Rev. 33, 363–372 (2004)

    CAS  Google Scholar 

  51. I. Rozas et al., Bifurcated hydrogen bonds: Three-centered interactions. J. Phys. Chem. A 102, 9925–9932 (1998)

    CAS  Google Scholar 

  52. M. Speranza, Chiral clusters in the gas phase. Adv. Phys. Org. Chem. 29, 147–281 (2004)

    Google Scholar 

  53. M. Spereanza et al., Chiral recognition by mass-resolved laser spectroscopy. Mass Spectrom. Rev. 24, 588–610 (2005)

    Google Scholar 

  54. W.A. Tao et al., Rapid enantiomeric determination of α-hydroxy acids by electrospray ionization tandem mass spectrometry. Chem. Commun. 20, 2023–2024 (2000)

    Google Scholar 

  55. W.A. Tao et al., Copper(II)-assisted enantiomeric analysis of d, l-amino acids using the kinetic method: Chiral recognition and quantification in the gas phase. J. Am. Chem. Soc. 122, 10598–10609 (2000)

    CAS  Google Scholar 

  56. W.A. Tao et al., Mass spectrometric quantitation of chiral drugs by the kinetic method. Anal. Chem. 73, 1692–1698 (2001)

    CAS  Google Scholar 

  57. W.A. Tao, R.G. Cooks, Parallel reactions for enantiomeric quantification of peptides by mass spectrometry. Angew. Chem. Int. Ed. 40, 757–760 (2001)

    CAS  Google Scholar 

  58. D. Zhang et al., Chiral resolution of d, l-amino acids by tandem mass spectrometry of Ni(II)-bound trimeric complexes. Int. J. Mass Spectrom. 204, 159–169 (2001)

    CAS  Google Scholar 

  59. W.A. Tao et al., Rapid enantiomeric quantification of an antiviral nucleoside agent (d, l-FMAU, 2′-fluoro-5-methyl-, d, l-arabinofuranosyluracil) by mass spectrometry. J. Med. Chem. 44, 3541–3544 (2001)

    CAS  Google Scholar 

  60. D.V. Augusti et al., Rapid quantitative chiral analysis of sugars by electrospray ionization tandem mass spectrometry using modified amino acids as chiral reference compounds. Anal. Chem. 74, 3458–3462 (2002)

    CAS  Google Scholar 

  61. W.A. Tao et al., Quotient ratio method for quantitative enantiomeric determination by mass spectrometry. Anal. Chem. 74, 3783–3789 (2002)

    CAS  Google Scholar 

  62. L. Wu et al., Ligand and metal-ion effects in metal-ion clusters used for chiral analysis of a-hydroxy acids by the kinetic method. Anal. Bioanal. Chem. 373, 618–627 (2002)

    CAS  Google Scholar 

  63. D.V. Augusti et al., Chiral analysis using the kinetic method with optimized fixed ligands: Applications to some antibiotics. Chem. Commun. 75, 2242–2243 (2002)

    Google Scholar 

  64. L. Wu et al., Chiral quantification of d-, l-, and meso-tartaric acid mixtures using a three-point calibration kinetic method. Chem. Commun. 137, 136–137 (2003)

    Google Scholar 

  65. W.A. Tao, R.G. Cooks, Chiral analysis by mass spectrometry. Anal. Chem. 75, 25A–31A (2003)

    CAS  Google Scholar 

  66. L. Wu, R.G. Cooks, Chiral analysis using the kinetic method with optimized fixed ligands: Application to some antibiotics. Anal. Chem. 75, 678–684 (2003)

    CAS  Google Scholar 

  67. L. Wu et al., Kinetic method for simultaneous enantiomeric determination of amino acid mixtures. J. Mass Spectrom. 38, 386–393 (2003)

    CAS  Google Scholar 

  68. M. Sawada et al., Enantioselectivity in fast-atom bombardment (FAB) mass spectrometry. J. Am. Chem. Soc. 114, 4405–4406 (1992)

    CAS  Google Scholar 

  69. M. Sawada et al., Enantioselective complexation of carbohydrate or crown ether hosts with organic ammonium ion guests detected by FAB mass spectrometry. J. Am. Chem. Soc. 115, 7381–7388 (1993)

    CAS  Google Scholar 

  70. M. Sawada et al., Cross-chiral examinations of molecular enantioselective recognition by fast atom bombardment mass spectrometry: Host–guest complexations between chiral crown ethers and chiral organic ammonium ions. Org. Mass Spectrom. 28, 1525–1528 (1993)

    CAS  Google Scholar 

  71. M. Sawada, Chiral Mass Spectrometry, in Biological Mass Spectrometry: Present and Future, ed. by T. Matsuo et al. (Wiley, New York, 1994)

    Google Scholar 

  72. M. Sawada et al., Chiral recognition in molecular complexation for the crown ether–amino ester system. A facile FAB mass spectrometric approach. Chem. Commun. 21, 2497–2498 (1994)

    Google Scholar 

  73. M. Sawada et al., Chiral recognition in host–guest complexation determined by the enantiomer-labeled guest method using fast atom bombardment mass spectrometry. J. Am. Chem. Soc. 117, 7726–7736 (1995)

    CAS  Google Scholar 

  74. M. Sawada, Chiral recognition detected by fast atom bombardment mass spectrometry. Mass Spectrom. Rev. 16, 73–90 (1997)

    CAS  Google Scholar 

  75. Sawada, M. et al., Determination of enantiomeric excess for amino acid ester salts using FAB mass spectrometry. Chem. Commun. 1569–1570 (1998)

    Google Scholar 

  76. M. Sawada et al., Chiral amino acid recognition detected by electrospray ionization (ESI) and fast atom bombardment (FAB) mass spectrometry (MS) coupled with the enantiomer-labelled (EL) guest method. J. Chem. Soc. Perkin Trans. 2, 701–710 (1998)

    Google Scholar 

  77. M. Sawada, Development of quantitative chiral recognition mass spectrometry. J. Mass Spectrom. Soc. Jpn. 50, 311–329 (2002)

    CAS  Google Scholar 

  78. M. Sawada et al., Depression of the apparent chiral recognition ability obtained in the host–guest complexation systems by electrospray and nano-electrospray ionization mass spectrometry. Eur. J. Mass Spectrom. 10, 27–37 (2004)

    CAS  Google Scholar 

  79. M. Sawada, in The Encyclopedia of Mass Spectrometry, vol. 4, ed. by N.M.M. Nibbering, (Elsevier, Amsterdam, 2004), pp. 740–748

    Google Scholar 

  80. A. Filippi et al., Gas-phase enantioselectivity. Int. J. Mass Spectrom. 198, 137–163 (2000)

    CAS  Google Scholar 

  81. B. Botta et al., Enantioselective guest exchange in a chiral resorcin[4]arene cavity. J. Am. Chem. Soc. 124, 7658–7659 (2002)

    CAS  Google Scholar 

  82. D. Catone et al., Homolytic Cα–Cβ bond cleavage in a chiral alkylarene radical cation: Effects of asymmetric microsolvation. Angew. Chem. Int. Ed. 43, 1868–1871 (2004)

    CAS  Google Scholar 

  83. A. Filippi, M. Speranza, Gas-phase activation and reaction dynamics of chiral ion-dipole complexes. Chem. Eur. J. 9, 5274–5282 (2003)

    CAS  Google Scholar 

  84. G. Fago et al., Chiral recognition of o-phospho-serine by mass spectrometry. Angew. Chem. Int. Ed. 40, 4051–4054 (2001)

    CAS  Google Scholar 

  85. H.M. Fales, G.J. Wright, Detection of chirality with the chemical ionization mass spectrometer. “Meso” ions in the gas phase. J. Am. Chem. Soc. 99, 2339–2340 (1977)

    CAS  Google Scholar 

  86. G. Hofmeister, J.A. Leary, Chiral recognition of lithium-coordinated diols using tandem mass spectrometry. Org. Mass Spectrom. 26, 811–812 (1991)

    CAS  Google Scholar 

  87. T.T. Dang et al., Chiral recognition in the gas phase: mass spectrometric studies of diastereomeric cobalt complexes. J. Am. Soc. Mass Spectrom. 5, 452–459 (1994)

    CAS  Google Scholar 

  88. H. Suming et al., Stereochemical effects in mass spectrometry. 3-Detection of chirality by chemical ionization mass spectrometry. Org. Mass Spectrom. 21, 7–10 (1986)

    Google Scholar 

  89. M.A. Baldwin et al., Identification of chiral isomers by fast atom bombardment mass-spectrometry – dialkyl tartrates. Biomed. Environ. Mass Spectrom. 16, 357–360 (1988)

    Google Scholar 

  90. Y.-Z. Chu et al., Stereochemical effects in mass spectrometry. 7. Determination of absolute configuration of some organic molecules by reaction mass spectrometry. Org. Mass Spectrom. 23, 821–824 (1988)

    Google Scholar 

  91. H.J. Yang, Y.-Z. Chen, Stereochemical effects in mass spectrometry. XIII-Determination of absolute configuration by fast atom bombardment mass spectrometry. Org. Mass Spectrom. 27, 736–740 (1992)

    CAS  Google Scholar 

  92. N.M. Sellier et al., Ion/molecule reactions in the gas phase: Comparison of the enantioselectivity of two chiral gases. Rapid Commun. Mass Spectrom. 8, 891–894 (1994)

    CAS  Google Scholar 

  93. A.K. Ghosh et al., C2-Symmetric chiral bis(oxazoline)-metal complexes in catalytic asymmetric synthesis. Tetrahedron Asymm. 9, 1–45 (1998)

    CAS  Google Scholar 

  94. J. Guo et al., Measurement of enantiomeric excess by kinetic resolution and mass spectrometry. Angew. Chem. Int. Ed. 38, 1755–1758 (1999)

    CAS  Google Scholar 

  95. H.C. Aspinall, H.C. Aspinall, Chiral lanthanide complexes: Coordination chemistry and applications. Chem. Rev. 102, 1807–1850 (2002)

    CAS  Google Scholar 

  96. Z.P. Yao et al., Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 1. Chiral recognition of 19 common amino acids. Anal. Chem. 72, 5383–5393 (2000)

    CAS  Google Scholar 

  97. T. Hamada et al., Catalytic asymmetric aldol reactions in aqueous media using chiral bis-pyridino-18-crown-6-rare earth metal triflate complexes. J. Am. Chem. Soc. 125, 2989–2996 (2003)

    CAS  Google Scholar 

  98. C.A. Schalley, P. Weis, Unusually stable magic number clusters of serine with a surprising preference for homochirality. Int. J. Mass Spectrom. 221, 9–19 (2002)

    CAS  Google Scholar 

  99. R.G. Cooks et al., Chiroselective self-directed octamerization of serine: Implications for homochirogenesis. Anal. Chem. 73, 3646–3655 (2001)

    CAS  Google Scholar 

  100. R.R. Julian et al., Nanocrystalline aggregation of serine detected by electrospray ionization mass spectrometry: Origin of the stable homochiral gas-phase serine octamer. J. Phys. Chem. B 106, 1219–1228 (2002)

    CAS  Google Scholar 

  101. A.E. Counterman, D.E. Clemmer, Magic number clusters of serine in the gas phase. J. Phys. Chem. B 105, 8092–8096 (2001)

    CAS  Google Scholar 

  102. K.J. Koch et al., Serine octamer metaclusters: Formation, structure elucidation and implications for homochiral polymerization. Chem. Commun. 18, 1854–1855 (2001)

    Google Scholar 

  103. K.J. Koch et al., Chiral transmission between amino acids: Chirally selective amino acid substitution in the serine octamer as a possible step in homochirogenesis. Angew. Chem. Int. Ed. 41, 1721–1724 (2002)

    CAS  Google Scholar 

  104. S.C. Nanita et al., Chiral enrichment of serine via formation, dissociation and soft-landing of octameric cluster ions. J. Am. Soc. Mass Spectrom. 15, 1360–1365 (2004)

    CAS  Google Scholar 

  105. C.A. Schalley, Supramolecular chemistry goes gas phase: The mass spectrometric examination of non-covalent interactions in host–guest chemistry and molecular recognition. Int. J. Mass Spectrom. 11, 11–39 (2000)

    Google Scholar 

  106. N. Borho et al., Chiral self-recognition in the gas phase: The case of glycidol dimers. Phys. Chem. Chem. Phys. 3, 1945–1948 (2001)

    CAS  Google Scholar 

  107. N. Borho, M. Suhm, Self-organization of lactates in the gas phase. Org. Biomol. Chem. 1, 4351–4358 (2003)

    CAS  Google Scholar 

  108. A. Filippi et al., Chiral discrimination of monofunctional alcohols and amines in the gas phase. Int. J. Mass. Spectrom. 210, 483–488 (2001)

    Google Scholar 

  109. A. Giardini et al., Chirality and intermolecular forces: Studies using R2PI experiments in supersonic beams. Phys. Chem. Chem. Phys. 2, 4139–4142 (2000)

    Google Scholar 

  110. A. Garrett, T. Zwier, Multiphoton ionization studies of clusters of immiscible liquids. II. C6H6–(H2O)n, n = 3–8 and (C6H6)2–(H2O)1,2. J. Chem. Phys. 96, 3402–3410 (1992)

    CAS  Google Scholar 

  111. M.R. Topp, Dynamics and structure of aromatic molecular van der Waals complexes. Int. Rev. Phys. Chem. 12, 149–204 (1993)

    CAS  Google Scholar 

  112. M. Satta et al., Energetics of monohydrated chiral R(+)-1-phenyl-1-propanol: supersonic beam experiments and density functional calculations. Chem. Phys. Lett. 316, 94–100 (2000)

    CAS  Google Scholar 

  113. A. Latini et al., Short range interactions within molecular complexes formed in supersonic beams: Structural effects and chiral discrimination. Chem. Eur. J. 6, 1042–1049 (2000)

    CAS  Google Scholar 

  114. K. Le Barbu et al., An experimental and theoretical study of jet-cooled complexes of chiral molecules: The role of dispersive forces in chiral discrimination. J. Phys. Chem. A 102, 128–137 (1998)

    Google Scholar 

  115. N. Seurre et al., Structural study of hydrogen-bonded complexes between 2-aminoethanol derivatives and a chiral aromatic alcohol. J. Mol. Struct. 692, 127–137 (2004)

    CAS  Google Scholar 

  116. A. King, B. Howard, A microwave study of the hetero-chiral dimer of butan-2-ol. Chem. Phys. Lett. 348, 343–349 (2001)

    CAS  Google Scholar 

  117. Z. Su et al., Chiral self-recognition: Direct spectroscopic detection of the homochiral and heterochiral dimers of propylene oxide in the gas phase. J. Am. Chem. Soc. 128, 17126–17131 (2006)

    CAS  Google Scholar 

  118. S. Portmann et al., Chiral discimination in hydrogen-bonded complexes. J. Chem. Phys. 113, 9577–9585 (2000)

    CAS  Google Scholar 

  119. M. Elango et al., Hydrogen peroxide clusters: The role of open book motif in cage and helical structures. J. Phys. Chem. A 110, 6294–6300 (2006)

    CAS  Google Scholar 

  120. I. Alkorta et al., Bond length-electron density relationships: From covalent bonds to hydrogen bond interactions. Struct. Chem. 9, 243–247 (1998)

    CAS  Google Scholar 

  121. I. Alkorta et al., Comparison of models to correlate electron density at the bond critical point and bond distance. Theochem 496, 131–137 (2000)

    CAS  Google Scholar 

  122. E. Espinosa et al., From weak to strong interactions: A comparative analysis of the topological and energetic properties of the electron density distribution involving X–F···F–Y systems. J. Chem. Phys. 117, 5529–5543 (2001)

    Google Scholar 

  123. J. Catalán et al., Etude de la tautomerie annulaire du pyrrole, de l’imidazole et du pyrazole. Bull. Soc. Chim. Fr. 3, 429–435 (1986)

    Google Scholar 

  124. T. Steiner, W. Saenger, Lengthening of the covalent O–H bond in O–HO hydrogen bonds re-examined from low-temperature neutron diffraction data of organic compounds. Acta Crystallogr. Sect. B B50, 348–357 (1994)

    CAS  Google Scholar 

  125. T. Steiner, Lengthening of the N–H bond in N–H N hydrogen bonds. Preliminary structural data and implications of the bond valence concept. Chem. Commun. 13, 1331–1332 (1995)

    Google Scholar 

  126. M. Ramos et al., A theoretical study of the influence of electric fields on hydrogen bonded acid–base complexes. J. Phys. Chem. A 101, 9791–9800 (1997)

    CAS  Google Scholar 

  127. I.D. Brown, Chemical and steric constraints in inorganic solids. Acta Crystallogr. Sect. B B48, 553–572 (1992)

    CAS  Google Scholar 

  128. J.T. Hynes et al. (eds), Hydrogen-Transfer Reactions (Wiley, Weinheim, Germany, 2007), p. 1393

    Google Scholar 

  129. S. Kojo, K. Tanaka, Enantioselective crystallization of d, l-amino acids induced by spontaneous asymmetric resolution of d, l-asparagine. Chem. Commun. 19, 1980–1981 (2001)

    Google Scholar 

  130. S. Kojo et al., Racemic d,l-asparagine causes enantiomeric excess of other coexisting racemic d,l-amino acids during recrystallization: A hypothesis accounting for the origin of l-amino acids in the biosphere. Chem. Commun. 19, 2146–2147 (2004)

    Google Scholar 

  131. A. Dobashi et al., Self-induced nonequivalence in the association of d- and l-amino acid derivatives. J. Am. Chem. Soc. 108, 307–308 (1986)

    CAS  Google Scholar 

  132. T. Williams et al., Diastereomeric solute-solute interactions of enantiomers in achiral solvents. Nonequivalence of the nuclear magnetic resonance spectra of racemic and optically active dihydroquinine. J. Am. Chem. Soc. 91, 1871–1872 (1969)

    CAS  Google Scholar 

  133. A. Perczel, A.G. Császár, Toward direct determination of conformations of protein building units from multidimensional NMR experiments I. A theoretical case study of For-Gly–NH2 and For–l–Ala–NH2. J. Comput. Chem. 21, 882–900 (2000)

    CAS  Google Scholar 

  134. G.S. Denisov, K.G. Tokhadze, Ultrastrong hydrogen bond in gas phase. Dimer of dimethylphosphinic acid. Dokl. Phys. Chem. 337, 117–119 (1994)

    Google Scholar 

  135. K.G. Tokhadze et al., First example of the ABC ν(OH) absorption structure for both gaseous and crystalline phase: Infrared studies of dimethylphosphinic acid. J. Mol. Struct. 404, 55–62 (1997)

    CAS  Google Scholar 

  136. L. González et al., Very strong hydrogen bonds in neutral molecules: The phosphinic acid dimers. J. Chem. Phys. 109, 2685–2693 (1998)

    Google Scholar 

  137. O. Mó et al., Spontaneous self-ionization in the gas phase: A theoretical prediction. Chem. Phys. Chem. 7, 465–467 (2001)

    Google Scholar 

  138. O. Mamula et al., Helicates of chiragen-type ligands and their aptitude for chiral self-recognition. Chem. Eur. J. 11, 3049–3057 (2005)

    CAS  Google Scholar 

  139. S.J. George et al., Helicity induction and amplification in an oligo(p-phenylenevinylene) assembly through hydrogen-bonded chiral acids. Angew. Chem. Int. Ed. 46, 8206–8211 (2007)

    CAS  Google Scholar 

  140. M. Lama et al., Lanthanide class of a trinuclear enantiopure helical architecture containing chiral ligands: Synthesis, structure, and properties. Chem. Eur. J. 13, 7358–7373 (2007)

    CAS  Google Scholar 

  141. A. Paladini et al., Enantiodiscrimination of chiral alpha-aminophosphonic acids by mass spectrometry. Chirality 13, 707–711 (2001)

    CAS  Google Scholar 

  142. P.L. Polavarapu, Optical rotation: Recent advances in determining the absolute configuration. Chirality 14, 768–781 (2002)

    CAS  Google Scholar 

  143. K. Ruud, T. Helgaker, Optical rotation studied by density-functional and coupled-cluster methods. Chem. Phys. Lett. 352, 533–539 (2002)

    CAS  Google Scholar 

  144. P.J. Stephens et al., Ab initio prediction of optical rotation: A comparison of density functional theory and Hartree–Fock methods for three 2,7,8-trioxabicyclo[3.2.1] octanes. Chirality 14, 288–296 (2002)

    CAS  Google Scholar 

  145. P.J. Stephens et al., Determination of absolute configuration using optical rotation calculated using density functional theory. Org. Lett. 4, 4595–4598 (2002)

    CAS  Google Scholar 

  146. K.B. Wiberg et al., Conformational effects on optical rotation. 3-substitued 1-butenes. J. Am. Chem. Soc. 125, 1888–1889 (2003)

    CAS  Google Scholar 

  147. P.J. Stephens et al., Prediction of optical rotation using density functional theory: 6,8-Dioxa-bicyclo[3.2.1]octanes. Tetrahedron Asymm. 11, 2443–2448 (2000)

    CAS  Google Scholar 

  148. B. Mennucci et al., Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A 106, 6102–6113 (2002)

    CAS  Google Scholar 

  149. R.K. Kondru et al., Atomic contributions to the optical rotation angle as a quantitative probe of molecular chirality. Science 282, 2247–2250 (1998)

    CAS  Google Scholar 

  150. R.K. Kondru et al., Structural and conformational dependence of optical rotation angles. J. Phys. Chem. A 103, 6603–6611 (1999)

    CAS  Google Scholar 

  151. A. Ligabue et al., On the resolution of the optical rotatory power of chiral molecules into atomic terms. A study of hydrogen peroxide. J. Chem. Phys. 116, 6427–6434 (2002)

    CAS  Google Scholar 

  152. M.P. Béccar Varela et al., Rationalization of the optical rotatory power of chiral molecules into atomic terms: A study of N2H4. Theor. Chem. Acc. 110, 428–433 (2003)

    Google Scholar 

  153. J. Crassous et al., Preparation of (+)-chloro fluoroiodo-methane, determination of its enantiomeric excess and of its absolute configuration. Tetrahedron Asymm. 15, 1995–2001 (2004)

    CAS  Google Scholar 

  154. M.R. Goldsmith et al., Optical rotation of noncovalent aggregates. J. Am. Chem. Soc. 125, 15696–15697 (2003)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from the Ministerio de Educación y Ciencia (Project No. CTQ2006-14487-C02-01/BQU) and Comunidad Autónoma de Madrid (Project MADRISOLAR, ref. S-0505/PPQ/0225). Thanks are given to the CTI (CSIC) for the allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alkorta, I., Elguero, J. (2009). Chirality and Chiral Recognition. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_3

Download citation

Publish with us

Policies and ethics