Skip to main content

Conformational Flexibility of Pyrimidine Ring in Nucleic Acid Bases

  • Chapter
  • First Online:

Abstract

Nucleic acid bases (NABs) have been considered for many years to be planar and conformationally rigid. However, recently, two possible sources of nucleobases nonplanarity have been found. Ab initio quantum-chemical calculations using large basis sets augmented by inclusion of electron correlation and recent experimental studies revealed that amino groups in isolated cytosine, guanine, and adenine adopt a nonplanar trigonal-pyramidal configuration. Since the values of amino group inversion barriers do not exceed approximately 1 kcal mol−1, this group possesses rather flexible geometry. A different source of nonplanarity of nucleobases originates from the high deformability of the pyrimidine ring. Transition of such a ring in uracil, thymine, cytosine, and guanine molecules from a planar equilibrium conformation to a sofa configuration characterized by a relevant torsion angle of ±20° entails an increase of energy by less than 1.5 kcal mol−1. Therefore, at room temperature, certain fraction of isolated DNA bases should possess nonplanar structure of the heterocyclic ring. This review summarizes recent theoretical studies on the flexibility of the NABs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Niedle, Principles of Nucleic Acid Structure (Elsevier, New York, 2008)

    Google Scholar 

  2. D. Svozil et al., DNA conformations and their sequence preferences. Nucl. Acids Res. 36, 3690–3706 (2008)

    Article  CAS  Google Scholar 

  3. R.H. Sarma (ed), Structure, Motion, Interaction and Expression of Biological Macromolecules (Adenine Press, New York, 1998)

    Google Scholar 

  4. O.V. Shishkin et al., Conformational analysis of canonical 2-deoxyribonucleotides. 1. Pyrimidine nucleotides. J. Biomol. Struct. Dyn. 21, 537–553 (2004)

    CAS  Google Scholar 

  5. O.V. Shishkin et al., Conformational analysis of canonical 2-deoxyribonucleotides. 2. Purine nucleotides. J. Biomol. Struct. Dyn. 22, 227–243 (2004)

    CAS  Google Scholar 

  6. N. Foloppe et al., Intrinsic conformational energetics associated with the glycosyl torsion in DNA: A quantum mechanical study. Biophys. J. 82, 1554–1569 (2002)

    Article  CAS  Google Scholar 

  7. P. Hobza et al., Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem. Rev. 99, 3247–3276 (1999)

    Article  CAS  Google Scholar 

  8. R.E.A. Kelly et al., Homopairing possibilities of the DNA bases cytosine and guanine: An ab initio DFT study. J. Phys. Chem. B 109, 22045–22052 (2005)

    Article  CAS  Google Scholar 

  9. M. McCullagh et al., Effect of loop distortion on the stability and structural dynamics of DNA hairpin and dumbbell conjugates. J. Phys. Chem. B 112, 11415–11421 (2008)

    Article  CAS  Google Scholar 

  10. L.L. O’Neil et al., Base flipping of the thymine dimer in duplex DNA. J. Phys. Chem. B 111, 11843–11849 (2007)

    Article  Google Scholar 

  11. J. Leszczynski, Are the Amino Groups in the Nucleic Acid Bases Coplanar with the Molecular Rings? Ab Initio HF/6–31G* and MP2/6–31G* Studies. Int. J. Quantum Chem. 19, 43–55 (1992)

    Article  CAS  Google Scholar 

  12. O.V. Shishkin, Conformational flexibility of dihydropyrimidinone and tetrahydopyrimidin-2,4-dione rings in DNA bases, J. Chem. Soc.Chem.Commun, 1538 (1995).

    Google Scholar 

  13. F. Dong et al., Vibrational transition moment angles in isolated biomolecules: A structural tool. Science 298, 1227–1230 (2002)

    Article  CAS  Google Scholar 

  14. M.O. Ben Luis et al., On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. J. Mol. Biol. 279, 1123–1136 (1998)

    Article  Google Scholar 

  15. Choi Myong Yong et al., Nonplanarity of adenine: Vibrational transition moment angle studies in helium nanodroplets. J. Phys. Chem. A 112, 7185–7190 (2008)

    Article  Google Scholar 

  16. O.V. Shishkin et al., Structural non-rigidity of six-membered aromatic rings. J. Mol. Struct. 616, 159–166 (2002)

    Article  CAS  Google Scholar 

  17. L.-L. Lai et al., 2,6-Bis(dimethylamino)-3,5-pyridine-dicarbaldehyde. Acta Crystallogr. C 50, 1931–1934 (1994)

    Google Scholar 

  18. D.A. Peters et al., Structures of 3-methoxypyrazine 1-oxide (1a) and 3-methoxy-5-methylpyrazine 1-oxide (1b). Acta Crystallogr. C 48, 307–311 (1992)

    Article  Google Scholar 

  19. O.V. Shishkin, Conformational flexibility of six-membered dihydrocycles. Russian Chem. Bull. 46, 1981–1991 (1997)

    Article  CAS  Google Scholar 

  20. P.W. Rabideau (ed), Conformational analysis of cyclohexenes, cyclohexadienes and related hydroaromatic compounds (VCH, New York, 1989)

    Google Scholar 

  21. K.B. Lipkowitz et al., Structure and conformation of 1,4-dihydrobenzene, 1,4-dihydronaphthalene, and 9,10-dihydroanthracene. A theoretical study. J. Org. Chem. 47, 1002–1005 (1982)

    Article  CAS  Google Scholar 

  22. Y.D. Wu et al., Theoretical study of conformational features of NAD+ and NADH analogs: protonated nicotinamide and 1,4-dihydronicotinamide. J. Org. Chem. 58, 2043–2045 (1993)

    Article  CAS  Google Scholar 

  23. O.V. Shishkin et al., Cycle mobility in 1,4-dihydropyridine and its monoalkyl and phenyl derivatives. Russ.Chem.Bull. 42, 1160–1162 (1993)

    Article  Google Scholar 

  24. O.V. Shishkin et al., The effect of substituents on the conformational mobility of the heterocycle in 1,4-dihydropyrimidine and its derivatives. Russ.Chem.Bull. 43, 1320–1323 (1994)

    Article  Google Scholar 

  25. O.V. Shishkin, Conformational flexibility of the 1, 4-dihydropyridine ring in calcium channel agonists and antagonists molecules. J. Mol. Struct. 385, 209–214 (1996)

    Article  CAS  Google Scholar 

  26. V.S. Bogdanov et al., The novel thermal rear-rangement in the pyrido[1,2-a]pyrimidine series: the transformation of 3-acetyl-4-phenylaminopy-rido[1,2-a]pyrimi-dine-4-on, Mendeleev Commun., 106-107 (1995).

    Google Scholar 

  27. O.V. Shishkin, Conformational flexibility of six-membered 1, 4-dihydrocycles. J. Mol. Struct. 412, 115–120 (1997)

    Article  CAS  Google Scholar 

  28. O.V. Shishkin, Conformational flexibility of six-membered 1, 2-dihydrocycles and substituent electronic effects. J. Mol. Struct. 447, 217–222 (1998)

    Article  CAS  Google Scholar 

  29. O.V. Shishkin, Molecular structure and conformational flexibility of the 1, 3-cyclohexadiene carbonyl derivatives. J. Mol. Struct. 403, 167–170 (1997)

    Article  CAS  Google Scholar 

  30. O.V. Shishkin, Molecular, electronic structure and conformational flexibility of the 1, 6-dihydropyrimidine, 4, 5-dihydrofuro[2, 3-d]pyrimidine and their oxo, imino and methylene derivatives. J. Mol. Struct. 385, 55–63 (1996)

    Article  CAS  Google Scholar 

  31. O.Y. Borbulevych et al., Conformational flexibility of antiaromatic 1, 4 heterocyclic analogues of 1, 4-cyclohexadiene. J. Mol. Struct. 446, 11–14 (1998)

    Article  CAS  Google Scholar 

  32. O.V. Shishkin, Conformational flexibility of di- and tetrahydropyrimidine rings in nucleic acid bases. An ab initio HF/6-31G** study. J. Mol. Struct. 447, 1–5 (1998)

    Article  CAS  Google Scholar 

  33. O.V. Shishkinet et al., Structural nonrigidity of nucleic acid bases. Post-Hartree-Fock ab initio study. Int. J. Quantum Chem. 80, 1116–1124 (2000)

    Article  Google Scholar 

  34. R.D. Brown, Structure and Conformations of Non-Rigid Molecules, ed. by M.D.J. Laane, B. van der Veken, H. Oberhammer (Kluwer Academic Publishers, Dordrecht, 1993)

    Google Scholar 

  35. A. Aamouche et al., Neutron inelastic scattering, optical spectroscopies and scaled quantum mechanical force fields for analyzing the vibrational dynamics of pyrimidine nucleic acid bases .1. Uracil. J. Phys. Chem. 100, 5224–5234 (1996)

    Article  CAS  Google Scholar 

  36. M.P. Gaigeot et al., Analysis of the structural and vibrational properties of RNA building blocks by means of neutron inelastic scattering and density functional theory calculations. Chem. Phys. 261, 217–237 (2000)

    Article  CAS  Google Scholar 

  37. A. Aamouche et al., Neutron inelastic scattering, optical spectroscopies, and scaled quantum mechanical force fields for analyzing the vibrational dynamics of pyrimidine nucleic acid bases. Thymine. J. Phys. Chem. A 101, 1808–1817 (1997)

    Article  CAS  Google Scholar 

  38. S.L. Zhang et al., Vibrational spectra and experimental assignments of thymine and nine of its isotopomers. J. Phys. Chem. A 102, 461–470 (1998)

    Article  CAS  Google Scholar 

  39. J.N. Low et al., Structure of 5-bromo-2′-deoxycytidine monohydrate. Cryst. Struct. Commun. 10, 931–935 (1981)

    CAS  Google Scholar 

  40. C.E. Dykstra, Quantum Chemistry and Molecular Spectroscopy (Prentice Hall, Cliffs, NewJersey, 1992)

    Google Scholar 

  41. O.V. Shishkin, Conformational flexibility of pyrimidine ring in adenine and related compounds. Chem. Phys. Lett. 330, 603–611 (2000)

    Article  CAS  Google Scholar 

  42. M.V. Zhigalko et al., Out-of-plane deformability of aromatic systems in naphthalene, anthracene and phenanthrene. J. Mol. Struct. 693, 153–159 (2004)

    Article  CAS  Google Scholar 

  43. O.V. Shishkin et al., Aromaticity of monosubstituted derivatives of benzene. The application of out-of-plane ring deformation energy for a quantitative description of aromaticity. J. Mol. Struct. 791, 158–164 (2006)

    Article  CAS  Google Scholar 

  44. F. Feixaset et al., Aromaticity of Distorted Benzene Rings: Exploring the Validity of Different Indicators of Aromaticity. J. Phys. Chem. A 111, 4513–4521 (2007)

    Article  Google Scholar 

  45. O. Isayev et al., Are isolated nucleic acid bases really planar? A Car-Parrinello molecular dynamics study. J. Phys. Chem. B 111, 3476–3480 (2007)

    Article  CAS  Google Scholar 

  46. O.V. Shishkin et al., Intramolecular flexibility of DNA bases in adenine-thymine and guanine-cytosine Watson-Crick base pairs. J. Mol. Struct. 477, 15–21 (1999)

    Article  CAS  Google Scholar 

  47. P. Hobza et al., Significant structural deformation of nucleic acid bases in stacked base pairs: an ab initio study beyond Hartree-Fock. Chem. Phys. Lett. 288, 7–14 (1998)

    Article  CAS  Google Scholar 

  48. O.S. Sukhanov et al., Molecular structure and hydrogen bonding in polyhydrated complexes of adenine: A DFT study. J. Phys. Chem. B 107, 2846–2852 (2003)

    Article  CAS  Google Scholar 

  49. O.S. Sukhanov et al., Structure and hydrogen bonding in polyhydrated complexes of guanine. Struct. Chem. 19, 171–180 (2008)

    Article  CAS  Google Scholar 

  50. O.V. Shishkin et al., Does the hydrated cytosine molecule retain the canonical structure? A DFT study. J. Phys. Chem. B 104, 5357–5361 (2000)

    Article  CAS  Google Scholar 

  51. O.V. Shishkin et al., Intramolecular Hydrogen Bonds in Canonical 2′-Deoxyribonucleotides: An Atoms in Molecules Study. J. Phys. Chem. B 110, 4413–4422 (2006)

    Article  CAS  Google Scholar 

  52. D.A. Peters et al., Structures of 3-methoxypyrazine 1-oxide (1a) and 3-methoxy-5-methylpyrazine 1-oxide (1b). Acta Crystallogr. C 48, 307–309 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF CREST Interdisciplinary Nanotoxicity Center (grant number HRD-0833178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shishkin, O.V., Gorb, L., Leszczynski, J. (2009). Conformational Flexibility of Pyrimidine Ring in Nucleic Acid Bases. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_21

Download citation

Publish with us

Policies and ethics