Skip to main content

Nucleic Acid Base Complexes: Elucidation of the Physical Origins of Their Stability

  • Chapter
  • First Online:
  • 3043 Accesses

Abstract

Nucleic acids and proteins are biochemically important complexes responsible for heirdom and miscellaneous enzymatic cellular processes. Thus, the understanding of the physical origins of their stability, i.e., the nature of intermolecular interactions, is crucial for the interpretation of various biochemical processes. The intercalation of drugs into DNA may serve as an illuminating example. The most accurate and reliable framework for the analysis of intermolecular interactions is provided by the quantum mechanics. In general, two distinct approaches are usually used for the evaluation of interaction energies, namely the supermolecular approach and the perturbation theory. While the former explains the interaction energy as small difference between the values of the energy of the whole complex and the sum of energies of the monomers, the latter allows for direct calculation of contributions with a clear physical interpretation. Unfortunately, the majority of studies of the nucleic acid base complexes had either shown little concern for the elucidation of the nature of interactions or analyzed this aspect qualitatively. The present contribution is especially aimed at the compact and comprehensible presentation of the most important observations made on the physical origins of nucleic acid base pairs’ stability. Throughout, we shall support the discussion by our own findings in this fascinating area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Müller-Dethlefs, P. Hobza, Noncovalent interactions: A challenge for experiment and theory. Chem. Rev. 100, 143–167 (2000)

    Article  Google Scholar 

  2. T. Helgaker, T.A. Ruden, P. Jørgensen, J. Olsen, W. Klopper, A priori calculation of molecular properties to chemical accuracy. J. Phys. Org. Chem. 17, 913–933 (2004)

    Article  CAS  Google Scholar 

  3. F.B. van Duijneveldt, J.G.C.M. van Duijneveldt-van de Rijdt, J.H. van Lenthe, State of the art in counterpoise theory. Chem. Rev. 94, 1873–1885 (1994)

    Google Scholar 

  4. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    CAS  Google Scholar 

  5. P. Jurečka, J. Šponer, J. Černý, P. Hobza, Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 8, 1985–1993 (2006)

    Article  Google Scholar 

  6. I. Dabkowska, H.V. Gonzales, P. Jurečka, P. Hobza, Stabilization energies of the hydrogen–bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5-d(GCGAAGC)-3 hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels. J. Phys. Chem. A 109, 1131–1136 (2005)

    Article  CAS  Google Scholar 

  7. G.E. Moore, Cramming more components onto integrated circuits, Electronics 38, 114–117 (1965)

    Google Scholar 

  8. P. Hobza, Calculations of the stabilization energies of the building blocks of biomacromolecules. AIP Conf. Proc. 963, 416–424 (2007)

    Article  CAS  Google Scholar 

  9. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, E. Kaxiras, Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. J. Chem. Phys. 114, 5149–5155 (2001)

    Article  CAS  Google Scholar 

  10. P. Jurečka, P. Hobza, D.R. Salahub, Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J. Comput. Chem. 28, 555–569 (2007)

    Google Scholar 

  11. J. Černý, P. Hobza, The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking. Phys. Chem. Chem. Phys. 7, 1624–1626 (2005)

    Google Scholar 

  12. S. Grimme, J. Antony, T. Schwabe, C. Mück-Lichtenfeld, Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org. Biomol. Chem. 5, 741–758 (2007)

    Article  CAS  Google Scholar 

  13. B. Jeziorski, R. Moszynski, K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 94, 1887–1930 (1994)

    Article  CAS  Google Scholar 

  14. A. Heßelmann, G. Jansen, M. Schütz, Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 122, 014103 (2005)

    Google Scholar 

  15. R. Podeszwa, R. Bukowski, K. Szalewicz, Density-fitting method in symmetry-adapted perturbation theory based on Kohn–Sham description of monomers. J. Chem. Theory Comput. 2, 400–412 (2006)

    Article  CAS  Google Scholar 

  16. R. Podeszwa, K. Szalewicz, Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 10, 2735–2746 (2008)

    Article  CAS  Google Scholar 

  17. G. Chałasiński, M. Szcześniak, On the connection between the supermolecular Møller–Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces. Mol. Phys. 63, 205–224 (1988)

    Article  Google Scholar 

  18. W.A. Sokalski, S. Roszak, K. Pecul, An efficient procedure for decomposition of the SCF interaction energy into components with reduced basis set dependence. Chem. Phys. Lett. 153, 153–159 (1988)

    Article  CAS  Google Scholar 

  19. W.A. Sokalski, S. Roszak, Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J. Mol. Struct. (Theochem.) 234, 387–400 (1991)

    Google Scholar 

  20. S.M. Cybulski, G. Chałasiński, R. Moszyński, On decomposition of second-order Møller–Plesset supermolecular interaction energy and basis set effects. J. Chem. Phys. 92, 4357–4363 (1990)

    Article  CAS  Google Scholar 

  21. R.W. Gora, W. Bartkowiak, S. Roszak, J. Leszczynski, A new theoretical insight into the nature of intermolecular interactions in the molecular crystal of urea. J. Chem. Phys. 117, 1031–1039 (2002)

    Article  CAS  Google Scholar 

  22. R.W. Gora, W. Bartkowiak, S. Roszak, J. Leszczynski, Intermolecular interactions in solution: Elucidating the influence of the solvent. J. Chem. Phys. 120, 2802–2813 (2004)

    Article  CAS  Google Scholar 

  23. R.W. Gora, S.J. Grabowski, J. Leszczynski, Dimers of formic acid, acetic acid, formamide and pyrrole-2-carboxylic acid: An ab initio study. J. Phys. Chem. A 109, 6397–6405 (2005)

    Article  CAS  Google Scholar 

  24. C. Fonseca Guerra, F.M. Bickelhaupt, Orbital interactions in strong and weak hydrogen bonds are essential for DNA replication. Angew. Chem. Int. Ed. 41, 2092–2095 (2002)

    Article  Google Scholar 

  25. G. Hill, G. Forde, N. Hill, W.A. Lester Jr., W.A. Sokalski, J. Leszczynski, Interaction energies in stacked DNA bases? How important are electrostatics. Chem. Phys. Lett. 381, 729–732 (2003)

    CAS  Google Scholar 

  26. R.R. Toczyłowski, S. Cybulski, An analysis of the interactions between nucleic acid bases: Hydrogen-bonded base pairs. J. Phys. Chem. A 107, 418–426 (2003)

    Article  Google Scholar 

  27. R.R. Toczyłowski, S. Cybulski, An analysis of the electrostatic interaction between nucleic acid bases. J. Chem. Phys. 123, 154312 (2005)

    Google Scholar 

  28. A. Hesselmann, G. Jansen, M. Schütz, Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach. J. Am. Chem. Soc. 128, 11730–11731 (2006)

    Article  CAS  Google Scholar 

  29. K.M. Langner, W.A. Sokalski, J. Leszczynski, Intriguing relations of interaction energy components in stacked nucleic acids. J. Chem. Phys. 127, 111102 (2007)

    Google Scholar 

  30. Ż. Czyżnikowska, R. Zaleśny, M. Ziółkowski, R.W. Gora, P. Cysewski, The nature of interactions in uracil dimer: An ab initio study. Chem. Phys. Lett. 450, 132–137 (2007)

    Article  Google Scholar 

  31. R. Sedlák, P. Jurečka, P. Hobza, Density functional theory-symmetry adapted perturbation treatment energy decomposition of nucleic acid base pairs taken from DNA crystal geometry. J. Chem. Phys. 127, 075104 (2007)

    Google Scholar 

  32. P. Cysewski, Ż. Czyżnikowska, R. Zaleśny, P. Czeleń, The post-SCF quantum chemistry characteristics of guanine–guanine stacking in B-DNA. Phys. Chem. Chem. Phys. 10, 2665–2672 (2008)

    Article  CAS  Google Scholar 

  33. A. Fiethen, G. Jansen, A. Hesselmann, M. Schütz, Stacking energies for average B-DNA structures from the combined density functional theory and symmetry-adapted perturbation theory approach. J. Am. Chem. Soc. 130, 1802–1803 (2008)

    Article  CAS  Google Scholar 

  34. Ż. Czyżnikowska, R. Zaleśny, P. Cysewski, Quantum chemical study of the nature of stacking interactions of 2-oxo-adenine with native B-DNA purine bases. Pol. J. Chem. 82, 2269–2279 (2008)

    Google Scholar 

  35. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  CAS  Google Scholar 

  36. H.M. Berman, W.K. Olson, D.L. Beveridge, J. Westbrook, A. Gelbin, T. Demeny, S.H. Hsieh, A.R. Srinivasan, B. Schneider, The nucleic-acid database – a comprehensive relational database of 3-dimensional structures of nucleic-acids. Biophys. J. 63, 751–759 (1992)

    Article  CAS  Google Scholar 

  37. K.E. Riley, P. Hobza, Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. J. Phys. Chem. A 111, 8257–8263 (2007)

    Article  CAS  Google Scholar 

  38. J. Šponer, K.E. Riley, P. Hobza, Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 10, 2595–2610 (2008)

    Google Scholar 

  39. S. Sentürker, B. Karahalil, M. Inal, H. Yilmaz, H. Müslümanoglu, G. Gedikoglu, M. Dizdaroglu, Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia. FEBS Lett. 416, 286–290 (1997)

    Article  Google Scholar 

  40. Z.I. Alam, A. Jenner, S.E. Daniel, A.J. Lees, N. Cairns, C.D. Marsden, P. Jenner, B. Halliwell, Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203 (1997)

    Article  CAS  Google Scholar 

  41. J.R. Wagner, C.C. Hu, B.N. Ames, Endogenous oxidative damage of deoxycytidine in DNA. Proc. Natl. Acad. Sci. 89, 3380–3384 (1992)

    Article  CAS  Google Scholar 

  42. J.A. Imlay, S. Linn, DNA damage and oxygen radical toxicity. Science 240, 1302–1309 (1988)

    Article  CAS  Google Scholar 

  43. D. Wang, D.A. Kreutzer, J.M. Essigmann, Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 400, 99–115 (1998)

    CAS  Google Scholar 

  44. D. Řeha, M. Kabeláč, F. Ryjaček, J. Šponer, M. Elstner, S. Suhai, P. Hobza, Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4,6-Diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. J. Am. Chem. Soc. 124, 3366–3376 (2002)

    Google Scholar 

  45. T. Korona, On the role of higher-order correlation effects on the induction interactions between closed-shell molecules. Phys. Chem. Chem. Phys. 9 6004–6011 (2007)

    Article  CAS  Google Scholar 

  46. T. Korona, B. Jeziorski, One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory. J. Chem. Phys. 125, 184109 (2006)

    Google Scholar 

  47. T. Korona, B. Jeziorski, Dispersion energy from denisty-fitted density susceptibilities of singles and doubles coupled cluster theory. J. Chem. Phys. 128, 144107 (2008)

    Google Scholar 

  48. C.A. Hunter, X.-J. Lu, DNA Base-stacking interactions: A comparison of theoretical calculations with oligonucleotide X-ray crystal structures. J. Mol. Biol. 265, 603–619 (1997)

    Article  CAS  Google Scholar 

  49. J. Šponer, J. Leszczynski, P. Hobza, Nature of nucleic acid-base stacking: Nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J. Phys. Chem. 100, 5590–5596 (1996)

    Google Scholar 

  50. J. Šponer, H.A. Gabb, J. Leszczynski, P. Hobza, Base–Base and deoxyribose–base stacking interactions in B-DNA and Z-DNA: A quantum-chemical study. Biophys. J. 73, 76–87 (1997)

    Article  Google Scholar 

  51. J. Šponer, J. Leszczynski, P. Hobza, Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61, 3–31 (2002)

    Google Scholar 

  52. P. Mignon, S. Loverix, J. Steyaert, P. Geerlings, Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucleic Acids Res. 33, 1779–1789 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Robert W. Gora for the access to the modified version of the GAMESS US code. This work was supported by computational grants from WCSS (Wroclaw Centre for Networking and Supercomputing) and ACK Cyfronet. The allocation of computing time is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Żaneta Czyżnikowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Czyżnikowska, Ż., Zaleśny, R., Papadopoulos, M.G. (2009). Nucleic Acid Base Complexes: Elucidation of the Physical Origins of Their Stability. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_20

Download citation

Publish with us

Policies and ethics