Skip to main content

Sequential Monte Carlo and Quantum Mechanics Calculation of the Static Dielectric Constant of Liquid Argon

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry
  • 3062 Accesses

Abstract

A combined and sequential use of Monte Carlo simulation and quantum mechanics calculations is made to obtain the static dipole polarizability, and the related dielectric constant of atomic argon, in the liquid phase. Using Metropolis Monte Carlo simulation, within the NPT ensemble, the structure of liquid argon is obtained at T = 91.8 K and P = 1.8 atm. Seventy statistically relevant configurations are sampled for quantum mechanical calculations of the static dipole polarizability. Each configuration is composed of 14 Ar atoms, corresponding to the first solvation shell. Using these structures’ density-functional theory, calculations are performed within the B3P86 hybrid functional and the aug-cc-pVDZ basis set to obtain statistically converged values for the dipole polarizability. Three different models are used to extract the polarizability per atom. From the calculated density and dipole polarizability, the static dielectric constant is obtained using the simple Clausius-Mossotti relation. Our best result indicates a dipole polarizability of 11.6 a 30 and a dielectric constant of 1.52 in agreement with an experimentally available result of 1.53.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Tapia, O. Goscinski, Self-consistent reaction field theory of solvent effects. Mol. Phys. 29, 1653–1661 (1975)

    Article  CAS  Google Scholar 

  2. J.L. Rivail, D. Rinaldi, A quantum chemical approach to dielectric solvent effects on molecular liquids. Chem. Phys. 18, 233–242 (1976)

    Article  CAS  Google Scholar 

  3. J. Tomasi, M. Persico, Molecular interactions in solutions: An overview of methods on continuous distribution of the solvents. Chem. Rev. 94, 2027–2094 (1994)

    Article  CAS  Google Scholar 

  4. M.M. Karelson, M.C. Zerner, Theoretical treatment of solvent effects on electronic spectroscopy. J. Phys. Chem. 96, 6949–6957 (1992)

    Article  CAS  Google Scholar 

  5. J. Tomasi, Thirty years of continuum solvation chemistry: A review, and prospect for the near future. Theor. Chem. Acc. 112, 184–203 (2004)

    Article  CAS  Google Scholar 

  6. D.M. Heyes, The Liquid State. Applications of Molecular Simulations (Wiley, New York, 1998)

    Google Scholar 

  7. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford 1987)

    Google Scholar 

  8. J.T. Blair, K. Krogh-Jespersen, R.M. Levy, Solvent effects on optical absorption spectra. The 1A11A2 transition of formaldehyde in water. J. Am. Chem. Soc. 111, 6948–6956 (1989)

    Article  CAS  Google Scholar 

  9. J. Gao, Monte Carlo quantum mechanical-configuration interaction and molecular mechanics simulation of solvent effects on the n – π* blue shift of acetone. J. Am. Chem. Soc. 116, 9324–9328 (1994)

    Article  CAS  Google Scholar 

  10. J. Zeng et al., Solvent effects on molecular spectra. I. Normal pressure and temperature Monte Carlo simulations of the structure of dilute pyrimidine in water. J. Chem. Phys. 99, 1482–1495 (1993)

    Article  CAS  Google Scholar 

  11. K. Coutinho, S. Canuto, Solvent effects in emission spectroscopy: A Monte Carlo quantum mechanics study of the n – π* shift of formaldehyde in water. J. Chem. Phys. 113, 9132–9139 (2000)

    Article  CAS  Google Scholar 

  12. K. Coutinho, S. Canuto, Solvent effects from a sequential Monte Carlo-quantum mechanics approach. Adv. Quantum Chem. 28, 89–105 (1997)

    Article  CAS  Google Scholar 

  13. K. Coutinho et al., A Monte Carlo-quantum mechanics study of the solvatochromic shifts of the lowest transition of benzene. J. Chem. Phys. 112, 9874–9880 (2000)

    Article  CAS  Google Scholar 

  14. H.C. Georg et al., Solvent effects on UV-visible absorption spectrum of benzophenone in water: A combined Monte Carlo quantum mechanics study including solute polarization. J. Chem. Phys. 126, 034507-1–034507-8 (2007)

    Article  Google Scholar 

  15. T.S. Almeida et al., Electronic properties of liquid ammonia: A sequential molecular dynamicso/quantum mechanics approach. J. Chem. Phys. 128, 014506-1–014506-9 (2008)

    Article  Google Scholar 

  16. A.D. Becke, Density-functional thermochemistry.III. The role of exact exchange. J. Chem. Phys. 98, 5648–5852 (1993)

    Article  CAS  Google Scholar 

  17. J.P. Perdew, Density functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986)

    Article  Google Scholar 

  18. A. Morita, S. Kato, An ab initio analysis of medium perturbation on molecular polarizabilities. J. Chem. Phys. 110, 11987–11998 (1999)

    Article  CAS  Google Scholar 

  19. K. Coutinho, S. Canuto, Sequential Monte Carlo/quantum mechanics study of the dipole polarizability of atomic liquids: The argon case, in Atoms, Molecules and Clusters in Electric Fields. Theoretical Approaches to the Calculation of Electric Polarizabilities, ed. by G. Maroulis (Imperial College Press, London, 2006), pp. 405–420

    Chapter  Google Scholar 

  20. G.C. Maitland, E.B. Smith, The intermolecular pair potential of argon. Mol. Phys. 22, 861–868 (1971)

    Article  CAS  Google Scholar 

  21. K. Coutinho, S. Canuto, DICE: A general Monte Carlo program for liquid simulation (University of São Paulo, Brazil (, 2000)

    Google Scholar 

  22. T. Malaspina et al., Ab initio calculation of hydrogen bonds in liquids: A sequential Monte Carlo quantum mechanics study of pyridine in water. J. Chem. Phys. 117, 1692–1699 (2002)

    Article  CAS  Google Scholar 

  23. S. Canuto et al., New developments in Monte Carlo/quantum mechanics methodology. The solvatochromism of β-carotene in different solvents. Adv. Quantum Chem. 41, 161–183 (2002)

    Article  CAS  Google Scholar 

  24. G. Maroulis, Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules. J. Chem. Phys. 113, 1813–1820 (2000)

    Article  CAS  Google Scholar 

  25. K.V. Mikkelsen et al., Sign change of hyperpolarizabilities of solvated water. J. Chem. Phys. 102, 9362–9367 (1995)

    Article  CAS  Google Scholar 

  26. S. Canuto et al., The dipole polarizability of F- in aqueous solution. A sequential Monte Carlo/quantum mechanics study. Adv. Quantum Chem. 48, 141–150 (2005)

    Article  Google Scholar 

  27. F.B. van Duijneveldt et al., State of the art in counterpoise theory. Chem. Rev. 94, 1873–1885 (1994)

    Article  Google Scholar 

  28. M.J. Frisch et al., Gaussian 98, Revision A.6, Gaussian, Inc. (Pittsburgh, PA, 1998)

    Google Scholar 

  29. A. Eisenstein, N.S. Gingrich, The diffraction of X-ray by argon in the liquid, vapor, and critical region. Phys. Rev. 62, 261–270 (1942)

    Article  CAS  Google Scholar 

  30. C. Lupinetti, A.J. Thakkar, Polarizabilities and hyperpolarizabilities for the atoms, Al, Si, P, Cl and Ar:Coupled cluster calculations. J. Chem. Phys. 122, 44301-1–44301-7 (2005)

    Article  Google Scholar 

  31. U. Hohm, K. Kerl, Interferometric measurement of the dipole polarizability of molecules between 300 K and 1100 K. Monochromatic measurements at λ = 632.99 nm for the noble gases and H2, N2, O2, and CH4. Mol. Phys. 69, 819–831 (1990)

    Article  CAS  Google Scholar 

  32. D.R. Johnston et al., Dielectric constants of imperfect gases.I. Helium, argon, nitrogen, and methane. J. Chem. Phys. 33, 1310–1317 (1960)

    Article  CAS  Google Scholar 

  33. R.J. Wheatley, Time-dependent coupled-cluster calculations of polarizabilities and dispersion energy coefficients. J. Comput. Chem. 29, 445–450 (2008)

    Article  CAS  Google Scholar 

  34. H. Frölich, Theory of Dielectrics (Clarendon Press, Oxford, 1958)

    Google Scholar 

  35. D.R. Lide (ed), Handbook of Chemistry and Physics, 73rd edn. (CRC Press, Boca Raton, 1993), p. 9.51

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by CNPq, CAPES, and FAPESP (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvio Canuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Coutinho, K., Canuto, S. (2009). Sequential Monte Carlo and Quantum Mechanics Calculation of the Static Dielectric Constant of Liquid Argon. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_16

Download citation

Publish with us

Policies and ethics