Skip to main content

Toward Understanding of Hydrogen Storage in Single-Walled Carbon Nanotubes by Investigations of Chemisorption Mechanism

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

We provide an overview of experimental and theoretical studies on hydrogen storage in single-walled carbon nanotubes (SWNTs) via chemisorption mechanism. The atomic hydrogens that are generated by dissociation of H2 molecules bind with carbon atoms of nanotubes, leading to strong C–H bonds in the chemisorption process. Recent experimental study indicates that 5.1 ± 1.2 wt% hydrogen storage could be achieved by hydrogenation (chemisorption process) of SWNTs. Our computational study shows that chemisorptions of one and two hydrogen atoms on the external surface of (3, 3), (4, 4), (5, 5), and (6, 6) armchair SWNTs are highly exothermic processes. Furthermore, two hydrogen atoms favor to bind at adjacent positions rather than at alternate carbon sites. This is different from the results reported on zigzag nanotubes. The chemisorptions of one and two hydrogen atoms significantly alter the C–C bond lengths of SWNTs in the vicinity of hydrogen addition due to the change of hybridization of carbon atom(s) from sp2 to sp3 at the chemisorption site(s). The effect of increasing the length of SWNTs on the geometries and the reaction energies of hydrogen chemisorption has also been explored. The high exothermicity of the chemisorption of hydrogen atoms on the surface of SWNTs explains the reason for the requirement of high temperature to remove hydrogen from hydrogenated SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Dillon et al., Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997)

    Article  CAS  Google Scholar 

  2. P. Chen et al., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91 (1999)

    Article  CAS  Google Scholar 

  3. D.J. Browning et al., Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism. Nano Lett. 2, 201 (2002)

    Article  CAS  Google Scholar 

  4. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  5. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    Article  CAS  Google Scholar 

  6. D.S. Bethune et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993)

    Article  CAS  Google Scholar 

  7. V. Barone et al., Interaction of atomic hydrogen with single-walled carbon nanotubes: A density functional theory study. J. Chem. Phys. 120, 7169 (2004)

    Article  CAS  Google Scholar 

  8. J. Li et al., Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys. 119, 2376 (2003)

    Article  CAS  Google Scholar 

  9. S.S. Han, H.M. Lee, Adsorption properties of hydrogen on (10, 0) single-walled carbon nanotube through density functional theory. Carbon 42, 2169 (2004)

    Article  CAS  Google Scholar 

  10. F.H. Yang et al., Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J. Phys. Chem. B 110, 6236 (2006)

    Article  CAS  Google Scholar 

  11. H.-S. Kim et al., Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J. Phys. Chem. B 109, 8983 (2005)

    Article  CAS  Google Scholar 

  12. A. Ansón et al., Hydrogen capacity of palladium-loaded carbon materials. J. Phys. Chem. B 110, 6643 (2006)

    Article  Google Scholar 

  13. A. Nikitin et al., Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 225507 (2005)

    Article  Google Scholar 

  14. B.N. Khare et al., Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2, 73 (2002)

    Article  CAS  Google Scholar 

  15. P. Ruffieux et al., Hydrogen adsorption on sp2-bonded carbon: Influence of the local curvature. Phys. Rev. B 66, 245416 (2002)

    Google Scholar 

  16. O. Wessely et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and graphene. Phys. Rev. B 76, 161402 (2007)

    Article  Google Scholar 

  17. G. Zhang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 6026 (2006)

    Article  CAS  Google Scholar 

  18. G. Chiarello et al., Vibrational and electronic properties of hydrogen adsorbed on single-wall carbon nanotubes. Phys. Rev. B 69, 153409 (2004)

    Article  Google Scholar 

  19. S. Pekker et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001)

    Article  CAS  Google Scholar 

  20. K.P. Meletov et al., Raman study of the high-pressure hydrogenated single-wall carbon nanotubes: In search of chemically bonded and adsorbed molecular hydrogen. Chem. Phys. Lett. 433, 335 (2007)

    Article  CAS  Google Scholar 

  21. T.C. Dinadayalane et al., Chemisorption of hydrogen atoms on the sidewalls of armchair single-walled carbon nanotubes. J. Phys. Chem. C 111, 7376 (2007)

    Article  CAS  Google Scholar 

  22. A. Kaczmarek et al., Effect of tube length on the chemisorptions of one and two hydrogen atoms on the sidewalls of (3, 3) and (4, 4) single-walled carbon nanotubes: A theoretical study. Int. J. Quantum Chem. 107, 2211 (2007)

    Article  CAS  Google Scholar 

  23. L. Chen et al., Mechanistic study on hydrogen spillover onto graphitic carbon materials. J. Phys. Chem. C 111, 18995 (2007)

    Article  CAS  Google Scholar 

  24. T. Yildirim et al., First-principles investigation of structural and electronic properties of solid cubane and its doped derivatives. Phys. Rev. B 62, 7625 (2000)

    Article  CAS  Google Scholar 

  25. T. Yildirim et al., Pressure-induced interlinking of carbon nanotubes. Phys. Rev. B 62, 12648 (2000)

    Article  CAS  Google Scholar 

  26. S.P. Chen et al., Chemisorption of hydrogen molecules on carbon nanotubes under high pressure. Phys. Rev. Lett. 87, 205502 (2001)

    Article  Google Scholar 

  27. K.A. Park et al., Adsorption of atomic hydrogen on single-walled carbon nanotubes. J. Phys. Chem. B 109, 8967 (2005)

    Article  CAS  Google Scholar 

  28. T. Yildirim et al., Exohydrogenated single-wall carbon nanotubes. Phys. Rev. B 64, 075404 (2001)

    Article  Google Scholar 

  29. X. Yang, J. Ni, Calculations of hydrogen coverage on single-walled carbon nanotubes: Dependence on nanotube size, temperature, and pressure. Phys. Rev. B 74, 195437 (2006)

    Article  Google Scholar 

  30. M. Svensson, ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J. Phys. Chem. 100, 19357 (1996)

    Article  CAS  Google Scholar 

  31. C.W. Bauschlicher Jr., High coverage of hydrogen on a (10, 0) carbon nanotube. Nano Lett. 1, 223 (2001)

    Article  CAS  Google Scholar 

  32. C.W. Bauschlicher Jr., Hydrogen and fluoride binding to the sidewalls of a (10, 0) carbon nanotube. Chem. Phys. Lett. 322, 237 (2000)

    Article  CAS  Google Scholar 

  33. J.S. Arellano et al., Interaction of molecular and atomic hydrogen with (5, 5) and (6, 6) single-wall carbon nanotubes. J. Chem. Phys. 117, 2281 (2002)

    Article  CAS  Google Scholar 

  34. G. Chen et al., Theoretical study of the adsorption of H2 on (3, 3) carbon nanotubes. Phys. Rev. B 72, 045444 (2005)

    Article  Google Scholar 

  35. G.E. Froudakis, Hydrogen interaction with single-walled carbon nanotubes: A combined quantum-mechanics/molecular-mechanics study. Nano Lett. 1, 179 (2001)

    Article  CAS  Google Scholar 

  36. G. Jia et al., Electronic structures and hydrogenation of a chiral single-wall (6, 4) carbon nanotube: A density functional theory study. Chem. Phys. Lett. 418, 40 (2006)

    Article  CAS  Google Scholar 

  37. M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian, Wallingford, 2004)

    Google Scholar 

  38. A.P. Scott, L. Radom, Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 110, 16502 (1996)

    Article  Google Scholar 

  39. T.C. Dinadayalane, J. Leszczynski, Stone-Wales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study. Chem. Phys. Lett. 434, 86 (2007)

    Article  CAS  Google Scholar 

  40. A.J. Lu, B.C. Pan, Interaction of hydrogen with vacancies in a (12, 0) carbon nanotube. Phys. Rev. B 71, 165416 (2005)

    Article  Google Scholar 

  41. S. Dag et al., Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys. Rev. B 72, 155404 (2005)

    Article  Google Scholar 

  42. P.O. Krasnov, Clustering of Sc on SWNT and reduction of hydrogen uptake: Ab-initio all-electron calculations. J. Phys. Chem. C 111, 17977 (2007)

    Article  CAS  Google Scholar 

  43. X. Pei et al., Effects of different hydrogen distributions on the magnetic properties of hydrogenated single-walled carbon nanotubes. Phys. Rev. B 73, 195417 (2006)

    Article  Google Scholar 

  44. G. Zheng et al., Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment. Nano Lett. 7, 1622 (2007)

    Article  CAS  Google Scholar 

  45. T.C. Dinadayalane, J. Leszczynski, Toward Nanomaterials: Structural, Energetic and Reactivity Aspects of Single-Walled Carbon Nanotubes, in Nanomaterials: Design and Simulation, ed. by P.B. Balbuena, J.M. Seminario (Elsevier, Amsterdam, 2007), p. 167

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the High Performance Computational Design of Novel Materials (HPCDNM) Project funded by the Department of Defense through the U.S. Army Engineer Research and Development Center (Vicksburg, MS), Contract W912HZ-06-C-0057, and the Office of Naval Research (ONR), Grant 08PRO2615-00/N00014-08-1-0324. We thank Dr. A. Nikitin for providing us Fig.14.4 and his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dinadayalane, T.C., Leszczynski, J. (2009). Toward Understanding of Hydrogen Storage in Single-Walled Carbon Nanotubes by Investigations of Chemisorption Mechanism. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_14

Download citation

Publish with us

Policies and ethics