Skip to main content

Interactomics and Cancer

  • Chapter
  • First Online:
An Omics Perspective on Cancer Research

Abstract

Cancer is a complex disease with a myriad of genes and molecular processes involved. To unravel its underlying mechanisms, the main approach to date has been the study of individual genes and their association with carcinogenesis. As a recently emerging new paradigm, systems biology has complemented this time-honoured concept by promoting a holistic view of cancer as a network-associated disease. This new strategy is reflected par excellence by the construction of genome- and proteome-wide interaction networks and their utilization. We give here an overview of the current status of the human interactome and report first successes in its application in cancer research. In particular, interactomics-based analyses have been successfully undertaken for the characterization and de novo prediction of cancer-associated genes and processes. Although considerable challenges are still to overcome, interactomics promises to become a cornerstone in the systems biology of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Donaldson I, Wolting C et al (2001) BIND – The biomolecular interaction network database. Nucleic Acids Res 29:242–245

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res Database 34:D504–506

    Article  CAS  Google Scholar 

  • Breitkreutz BJ, Stark C, Reguly T et al (2008) The BioGRID Interaction Database: 2008 update. Nucleic Acids Res Database 36:D637–640

    Article  CAS  Google Scholar 

  • Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia G, Herzel H, Wanker EE et al (2006) Systematic functional assessment of human protein–protein interaction maps. Genome Inform 17:36–45

    CAS  PubMed  Google Scholar 

  • Chaurasia G, Iqbal Y, Hänig C et al (2007) UniHI: an entry gate to the human protein interactome. Nucleic Acids Res Database 35:D590–594

    Article  CAS  Google Scholar 

  • Chaurasia G, Malhotra S, Russ J et al (2009) UniHI 4: new tools for query, analysis and visualization of the human protein–protein interactome. Nucleic Acids Res Database 37:D657–D660

    Google Scholar 

  • Chuang HY, Lee E, Liu YT et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140

    Article  PubMed  Google Scholar 

  • Euler L (1736) Solutio problematis ad geometriam situs pertinentis, Commentarii academiae scientiarum Petropolitanae 8:128–140

    Google Scholar 

  • Franke L, van Bakel H, Fokkens L et al (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    Article  CAS  PubMed  Google Scholar 

  • Futschik ME, Chaurasia G, Herzel H (2007a) Comparison of human protein–protein interaction maps. Bioinformatics 23:605–611

    Article  CAS  PubMed  Google Scholar 

  • Futschik ME, Tschaut A, Chaurasia G et al (2007b) Graph-theoretical comparison reveals structural divergence of human protein interaction networks. Genome Inform 18:141–151

    Article  CAS  PubMed  Google Scholar 

  • Futschik ME, Chaurasia G, Tschaut A et al (2007c) Functional and transcriptional coherency of modules in the human protein interaction network. J Integr Bioinform 4:76

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hart GT, Ramani A, Marcotte E (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120

    Article  PubMed  Google Scholar 

  • Henning Hermjakob, Luisa Montecchi-Palazzi, Chris Lewington et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32: D452–D455

    Google Scholar 

  • Hernández P, Huerta-Cepas J, Montaner D et al (2007) Evidence for systems-level molecular mechanisms of tumorigenesis. BMC Genomics 8:185

    Article  PubMed  Google Scholar 

  • Janga SC, Collado-Vides J, Babu MM (2008) Transcriptional regulation constrains the organization of genes on eukaryotic chromosomes. Proc Natl Acad Sci USA 41:15761–15766

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL et al (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  • Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Tope G, Gillespie M, Vastrik I, et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., 33:D428–D443

    Google Scholar 

  • Kauffman SA (1993) Origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kerrien S, Alam-Faruque Y, Aranda B et al (2007) IntAct – open source resource for molecular interaction data. Nucleic Acids Res Database 35:D561–565

    Article  CAS  Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137

    Article  PubMed  Google Scholar 

  • Lage K, Karlberg EO, Størling ZM et al (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316

    Article  CAS  PubMed  Google Scholar 

  • Lehner B, Fraser BA (2004) A first-draft human protein-interaction map. Genome Biol 5:R63

    Article  PubMed  Google Scholar 

  • Luscombe NM, Babu MM, Yu H et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312

    Article  CAS  PubMed  Google Scholar 

  • Mani KM, Lefebvre C, Wang K et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169

    Article  PubMed  Google Scholar 

  • Mishra GR, Suresh M, Kumaran K et al (2006) Human protein reference database – 2006 update. Nucleic Acids Res Database 34:D411–414

    Article  CAS  Google Scholar 

  • Oti M, Snel B, Huynen MA et al (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43:691–698

    Article  CAS  PubMed  Google Scholar 

  • Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein–protein interaction database. Bioinformatics 21:832–834

    Article  CAS  PubMed  Google Scholar 

  • Peri S, Navarro JD, Amanchy R et al (2003) Development of human protein reference database as an initial platform for approaching 245 systems biology in humans. Genome Res., 13:2363–2371.

    Article  CAS  PubMed  Google Scholar 

  • Persico M, Ceol A, Gavrila C et al (2005) HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics 6:S21

    Article  PubMed  Google Scholar 

  • Platzer A, Perco P, Lukas A et al (2007) Characterization of protein-interaction networks in tumors. BMC Bioinformatics 8:224

    Article  PubMed  Google Scholar 

  • Prieto C, De Las Rivas J (2006) APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res Web Server 34:W298–302

    Article  CAS  Google Scholar 

  • Pujana MA, Han JJ, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349

    Article  CAS  PubMed  Google Scholar 

  • Ramani A, Bunescu R, Mooney RJ et al (2005) Consolidating the set of known human protein–protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 6:R40

    Article  PubMed  Google Scholar 

  • Ramírez F, Schlicker A, Assenov Y et al (2007) Computational analysis of human protein interaction networks. Proteomics 7:2541–2552

    Article  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res Database 32:D449–D451

    Article  CAS  Google Scholar 

  • Stelzl U, Worm U, Lalowski M et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  • Stumpf M, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105:6959–6964

    Article  CAS  PubMed  Google Scholar 

  • Tuck DP, Kluger HM, Kluger Y (2006) Characterizing disease states from topological properties of transcriptional regulatory networks. BMC Bioinformatics 7:236

    Article  PubMed  Google Scholar 

  • von Mering C, Krause R, Snel B et al (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403

    Article  Google Scholar 

  • Wachi S, Yoneda K, Wu R (2005) Interactome–transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21:4205–4208

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang Y, Vikis HG et al (2001) Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 29:25–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Paulo Martel and Nuno dos Santos for their important contributions to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias E. Futschik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chaurasia, G., Futschik, M.E. (2010). Interactomics and Cancer. In: Cho, W. (eds) An Omics Perspective on Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2675-0_9

Download citation

Publish with us

Policies and ethics