Skip to main content

Nitrogen, Sustainable Agriculture and Food Security: A Review

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

The impact of modern agriculture on natural resources has become a major global concern. Population growth and expanding demand for agricultural products constantly increase the pressure on land and water resources. A major point of concern for many intensively managed agricultural systems with high external inputs is the low resource-use efficiency, especially for nitrogen. A high input combined with a low efficiency ultimately results in environmental problems such as soil degradation, eutrophication, pollution of groundwater, and emission of ammonia and greenhouse gases. Evidently, there is a need for a transition of current agricultural systems into highly resource-use efficient systems that are profitable, but at the same time ecologically safe and socially acceptable. Here, opportunities to improve nitrogen-use efficiency in cropping and farming systems are analyzed and discussed. In the past and present, increased productivity of the major plant production systems has been derived from genetic improvement, and from greater use of external inputs such as energy, fertilizers, pesticides and irrigation water. Aiming at improving resource-use efficiencies, in high-input systems the focus should be on more yield with less fertilizer N. In low-input systems additional use of N fertilizer may be required to increase yield level and yield stability. Developing production systems that meet the goals of sustainable agriculture requires research on different scales, from single crops to diverse cropping and farming systems. It is concluded that N supply should match N demand in time and space, not only for single crops but for a crop rotation as an integrated system, in order to achieve a higher agronomic N-use efficiency. A combination of quantitative systems research, development of best practices and legislation will be needed to develop more environmentally-friendly agricultural systems. The growing complexity of managing N in sustainable agricultural systems calls for problem-oriented, interdisciplinary research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts H.F.M. Biewinga E.E., van Keulen H. (1992) Dairy farming systems based on efficient nutrient management, Neth. J. Agr. Sci. 40, 285–299.

    Google Scholar 

  • Aggarwal P.K., Kropff M.J., Cassman K.G., ten Berge H.F.M. (1997) Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments, Field Crop. Res. 51, 5–17.

    Google Scholar 

  • Altieri M.A. (1995) Agroecology: the science of sustainable agriculture, Westview, Boulder, CO.

    Google Scholar 

  • Asteraki E.J., Hart B.J., Ings T.C., Manley W.J. (2004) Factors influencing the plant and invertebrate diversity of arable field margins, Agr. Ecosyst. Environ. 102, 219–231.

    Article  Google Scholar 

  • Badgley C., Moghtar J., Quintero E., Zakem E., Chappell M.J., Aviles-Vazques K., Samulon A., Perfecto I. (2007) Organic agriculture and the global food supply, Renew. Agr. Food Syst. 22, 86–101.

    Article  Google Scholar 

  • Barrios E. (2007) Soil biota, ecosystem services and land productivity, Ecol. Econ. 64, 269–285.

    Google Scholar 

  • Becker M., Asch F., Maskey S.L., Pande K.R., Shah S.C., Shrestha S. (2007) Effects of transition season management on soil N dynamics and systems N balances in rice–wheat rotations of Nepal, Field Crop. Res. 103, 98–108.

    Google Scholar 

  • Beegle D.B., Carton O.T., Bailey J.S. (2000) Nutrient management planning: justification, theory, practices, J. Environ. Qual. 29, 72–79.

    Article  CAS  Google Scholar 

  • Belder P., Spiertz J.H.J., Bouman B.A.M., Guoan Lu, Tuong T.P. (2005a) Nitrogen economy and water productivity of lowland rice under water saving management, Field Crop. Res. 93, 169–185.

    Google Scholar 

  • Belder P., Bouman B.A.M., Spiertz J.H.J., Peng S., Castaneda A.R., Visperas R.M. (2005b) Crop performance, nitrogen and water use in flooded and aerobic rice, Plant Soil 273, 167–182.

    Article  CAS  Google Scholar 

  • Biemond H., Vos J. (1992) Effects of nitrogen and the development and growth of the potato plant. 2. The partitioning of dry matter, nitrogen and nitrate, Ann. Bot. 70, 37–45.

    CAS  Google Scholar 

  • Boling A., Tuong T.P., Jatmiko S.Y., Burac M.A. (2004) Yield constraints of rainfed lowland rice in Central Java, Indonesia, Field Crop. Res. 90, 351–360.

    Google Scholar 

  • Booij R., Kreuzer A.D.H., Smit A.L., van der Werf A. (1996) Effect of nitrogen availability on dry matter production, nitrogen uptake, and light interception of Brussels sprouts and leeks, Neth. J. Agr. Sci. 44, 3–19.

    Google Scholar 

  • Borlaug N.E. (2007) Sixty-two years of fighting hunger: personal recollections, Euphytica 157, 287–297.

    Article  Google Scholar 

  • Bouman B.A.M. (2007) A conceptual framework for the improvement of crop water productivity at different spatial scales, Agr. Syst. 93, 43–60.

    Google Scholar 

  • Bouman B.A.M., Van Keulen H., Van Laar H.H., Rabbinge R. (1996) The ‘School of De Wit’ crop growth simulation models: a pedigree and historical overview, Agr. Syst. 52, 171–198.

    Google Scholar 

  • Bouman B.A.M., Humphreys E., Tuong T.P., Barker R. (2007a) Rice and Water, Adv. Agron. 92, 187–237.

    Article  CAS  Google Scholar 

  • Bouman B.A.M., Feng Liping, Tuong T.P., Lu Guoan, Wang Huaqi, Feng Yueha (2007b) Exploring options to grow rice using less water in northern China using a modelling approach II. Quantifying yield, water balance components and water productivity, Agr. Water Manage. 88, 23–33.

    Article  Google Scholar 

  • Brussaard L., de Ruiter P.C., Brown G.G. (2007) Soil biodiversity for agricultural sustainability, Agr. Ecosyst. Environ. 121, 233–244.

    Article  Google Scholar 

  • Bussink D.W., Oenema O. (1998) Ammonia volatilization from dairy farming systems in temperate areas: a review, Nutr. Cycl. Agroecosys. 51, 19–33.

    Article  Google Scholar 

  • Cabrera-Bosquet L., Molero G., Bort J., Nogues S., Araus J.L. (2007) The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheat potted plants, Ann. Appl. Biol. 151, 277–289.

    Article  CAS  Google Scholar 

  • Campbell C.A., Myers R.J.K., Curtin D. (1995) Managing nitrogen for sustainable crop production, Fertil. Res. 42, 277–296.

    CAS  Google Scholar 

  • Cassman K.G., Kropff M.J., Gaunt J., Peng S. (1993) Nitrogen use efficiency of irrigated rice: what are the key constraints, Plant Soil 155–156, 359–362.

    Article  Google Scholar 

  • Cassman K.G., Dobermann A., Walters D.T., Yang H.(2003) Meeting cereal demand while protecting natural resources and improving environmental quality, Ann. Rev. Env. Res. 28, 10.1–10.44.

    Google Scholar 

  • Chapman A.L., Muchow R.C. (1985) Nitrogen accumulated and partitioned at maturity by grain legumes under different water regimes in a semi-arid tropical environment, Field Crop. Res. 11, 69–79.

    Google Scholar 

  • Connor D.J. (2008) Organic agriculture cannot feed the world, Field Crop. Res. 106, 187–190.

    Google Scholar 

  • De Willigen, P., van Noordwijk M. (1987) Roots for plant production and nutrient use efficiency, PhD-thesis, Agricultural University, Wageningen, 282 p.

    Google Scholar 

  • De Wit C.T. (1992) Resource use efficiency, Agr. Syst. 40, 125–151.

    Google Scholar 

  • Delgado J.A., Shaffer M., Hu C., Lavado R., Cueto-Wong J., Joosse P., Sotomayer D., Colon W., Follett R., DelGrosso S., Li X., Rimski-Korsakov H. (2008) An index approach to assess nitrogen losses to the environment, Ecol. Eng. 32, 108–120.

    Google Scholar 

  • Dimitrakopoulos P.G., Schmid B. (2004) Biodiversity effects increase linearly with biotope space, Ecol. Lett. 7, 574–583.

    Google Scholar 

  • Dobermann A., Cassman K.G. (2002) Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia, Plant Soil 247, 153–175.

    Article  CAS  Google Scholar 

  • Dreccer M.F., van Oijen M., Schapendonk A.H.C.M., Pot C.S., Rabbinge R. (2000) Dynamics of vertical nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis, Ann. Bot. 86, 821–831.

    Article  CAS  Google Scholar 

  • Drinkwater L.E., Snapp S.S. (2007) Nutrients in Agroecosystems: rethinking the management paradigm, Adv. Agron. 92, 163–186.

    Article  CAS  Google Scholar 

  • Eickhout B., Bouwman A.F., van Zeijts H. (2006) The role of nitrogen in world food production and environmental sustainability, Agr. Ecosyst. Environ. 116, 4–14.

    Article  CAS  Google Scholar 

  • Erisman J.W., Bleeker A., Galloway J., Sutton M.S. (2007) Reduced nitrogen in ecology and the environment, Environ. Pollut. 150, 140–149.

    Article  CAS  Google Scholar 

  • Evans L.T. (1999) Step towards feeding the Ten Billion, Plant Prod. Sci. 2, 3–9.

    Google Scholar 

  • Evans L.T., Fischer R.A. (1999) Yield potential: its definition, measurement and significance, Crop. Sci. 39, 1544–1551.

    Google Scholar 

  • Fan M., Lu S., Jiang R., Liu X., Zeng X., Goulding K.W.T., Zhang F. (2007) Nitrogen input, 15N balance and mineral N dynamics in a rice–wheat rotation in southwest China, Nutr. Cycl. Agroecosys. 79, 255–265.

    Article  CAS  Google Scholar 

  • Fornara D.A., Tilman D. (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation, J. Ecol. 96, 314–322.

    Article  CAS  Google Scholar 

  • Galloway J.N. (1998) The global nitrogen cycle: changes and consequences in: K.W. van der Hoek et al. (Eds.), Nitrogen, the Confer-N-s, Elsevier, Amsterdam, pp. 15–26.

    Google Scholar 

  • Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B., Cosby B.J., (2003) The nitrogen cascade, Bioscience 53, 341–356.

    Article  Google Scholar 

  • Giller K.E., Rowe E.C., de Ridder N., van Keulen H. (2006) Resource use dynamics and interactions in the tropics: Scaling up in space and time, Agr. Syst. 88, 8–27.

    Google Scholar 

  • Goudriaan J., Groot J.J.R., Uithol P.W.J. (2001) Productivity of Agro-ecosystems in: Roy J., Saugier B., Mooney H.A. (Eds.), Terrestrial Global Productivity, Academic, San Diego, pp. 310–313.

    Google Scholar 

  • Goulding K., Jarvis S., Whitmore A. (2008) Optimizing nutrient management for farm systems, Philos. T. Roy. Soc. B 363, 667–680.

    Article  CAS  Google Scholar 

  • Gupta R., Seth A. (2007) A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic plains (IGP), Crop. Prot. 26, 436–447.

    Google Scholar 

  • Hajjar R., Jarvis D.I., Gemmill-Herren B. (2008) The utility of crop genetic diversity in maintaining ecosystem services, Agr. Ecosyst. Environ. 123, 261–270.

    Article  Google Scholar 

  • Hansen S., de Ridder W. (2007) Agri-based alternative energy, Risks and opportunities for the farming industry. Rabobank International, The Netherlands, 68 p.

    Google Scholar 

  • Hazell P., Wood S. (2008) Drivers of change in global agriculture Philos. T. Roy. Soc. B 363, 495–515.

    Article  Google Scholar 

  • Herridge D.F., Peoples M.B., Boddey R.M. (2008) Global inputs of biological nitrogen fixation in agricultural systems, Plant Soil 311, 1–18.

    Article  CAS  Google Scholar 

  • Hikosaka K. (2004) Interspecific differences in the photosynthesis–nitrogen relationship: patterns, physiological causes and ecological importance, J. Plant Res.117, 481–494.

    Article  Google Scholar 

  • Hobbs P.R., Sayre Ken, Gupta Raj (2008) The role of conservation agriculture in sustainable agriculture Philos. T. Roy. Soc. B 363, 543–555.

    Article  Google Scholar 

  • Howden S.M., Soussana J.-F., Tubiello F.N., Chhetri N., Dunlop M., Meinke H. (2007) Adapting agriculture to climate change, PNAS 104, 19691–19696.

    Article  PubMed  CAS  Google Scholar 

  • Jiang L., Dai T., Jiang D., Cao W., Gan X., Wei S. (2004) Characterizing physiological N-use efficiency as influenced by nitrogen management Field Crop. Res. 2004, 239–250.

    Google Scholar 

  • Keating B.A., Carberry P.S. (1993) Resource capture and use in intercropping – solar radiation, Field Crop. Res. 34, 273–301.

    Google Scholar 

  • Kichey Th., Hirel B., Heumez E., Dubois F., Le Gouis J. (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers, Field Crop. Res. 102, 22–32.

    Google Scholar 

  • Knowles T., Moody R., McEachern M.G. (2007) European food scares and their impact on EU food policy, Brit. Food J. 1, 43–67.

    Article  Google Scholar 

  • Kyllingsbaek A., Hansen J.F. (2007) Development in nutrient balances in Danish agriculture 1980–2004, Nutr. Cycl. Agroecosys. 79, 267–280.

    Article  CAS  Google Scholar 

  • Ladha J.K., Pathak H., Krupnik T.J., Six J., van Kessel C. (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects, Adv. Agron. 87, 85–156.

    Article  CAS  Google Scholar 

  • Lal R. (2008) Soils and sustainable agriculture, A review, Agron. Sustain. Dev. 28, 57–64.

    Article  Google Scholar 

  • Langeveld J.W.A., Verhagen A., Neeteson J.J., van Keulen H., Conijn J.G., Schils R.L.M., Oenema J. (2007) Evaluating farm performance using agri-environmental indicators: Recent experiences for nitrogen management in The Netherlands, J. Environ. Manage. 82, 363–376.

    Article  PubMed  CAS  Google Scholar 

  • Laperche A., Devienne-Barret F., Maury O., Le Gouis J., Ney B. (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency, Theor. Appl. Genet. 113, 1131–1146.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire G., Oosterom E., Sheehy J., Jeuffroy M.H., Massignam A., Rossato L. (2007) Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crop. Res. 100, 91–106.

    Google Scholar 

  • Lloveras J., Chocarro C., Freixes O., Arque E., Moreno A., Santiver F. (2008) Yield, yield components, and forage nutritive value of alfalfa as affected by seeding rate under irrigated conditions, Agron. J. 100, 191–197.

    Google Scholar 

  • López-Bellido R.J., Castillo J.E., López-Bellido L. (2008) Comparative response of bread and durum wheat cultivars to nitrogen fertilizer in a rainfed Mediterranean environment: soil nitrate and N uptake and efficiency, Nutr. Cycl. Agroecosys. 80, 121–130.

    Article  Google Scholar 

  • Martre P., Semenov M.A., Jamieson P.D. (2007) Simulation analysis of physiological traits to improve yield, nitrogen use efficiency and grain protein concentration in wheat, in: Spiertz J.H.J., Struik P.C., Van Laar H.H. (Eds.), Scale and Complexity in Plant Systems Research: Gene–Plant–Crop Relations, Wageningen UR Frontis Series, Springer, Berlin, pp. 181–201.

    Chapter  Google Scholar 

  • Massey R.E., Myers D.B., Kitchen N.R., Sudduth K.A. (2008) Profitability maps as an input for site- specific management decision making, Agron. J. 100, 52–59.

    Google Scholar 

  • Matson P.A., Parton W.J., Power A.G., Swift M.J. (1997) Agricultural intensification and ecosystems properties, Science 277, 504–509.

    Article  PubMed  CAS  Google Scholar 

  • McDonald A.J., Hobbs P.R., Riha S.J. (2006) Does the system of rice intensification outperform conventional best management, A synopsis of the empirical record, Field Crop. Res. 96, 31–36.

    Google Scholar 

  • Neeteson J.J., Schröder J.J., Ten Berge H.F.M. (2002) A multi-scale system approach to nutrient management research in the Netherlands, NJAS Wageningen J. Life Sci. 50, 141–151.

    Google Scholar 

  • OECD (2001) Environmental Indicators for Agriculture: Methods and Results, Vol. 3, OECD, Paris.

    Google Scholar 

  • Oehme M., Frei M., Razzak M.A., Dewan S., Becker K. (2007) Studies on nitrogen cycling under different nitrogen inputs in integrated rice–fish culture in Bangladesh, Nutr. Cycl. Agroecosys. 79, 181–191.

    Article  Google Scholar 

  • Oerlemans J., Von Oberfeld W.O., Wolf D. (2007) Impact of long-term nutrient supply on plant species diversity in grassland: and experimental approach on conventionally used pastures, J. Appl. Bot. Food Qual. 81, 151–157.

    CAS  Google Scholar 

  • Olesen J.E., Bindi M. (2002) Consequences of climate change for European Agricultural productivity, land use and policy, Eur. J. Agron. 16, 239–262.

    Article  Google Scholar 

  • Olson D.M., Wäckers F.G. (2007) Management of field margins to maximize multiple ecological services, J. Appl. Ecol. 44, 13–21.

    Article  Google Scholar 

  • Pande K.R., Becker M. (2003) Seasonal soil nitrogen dynamics in rice–wheat cropping systems of Nepal, J. Plant Nutr. Soil Sci. 166, 499–506.

    Article  CAS  Google Scholar 

  • Peng S., Bouman B.A.M. (2007) Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen, in: Spiertz J.H.J., Struik P.C., Van Laar H.H. (Eds.), Scale and Complexity in Plant Systems Research: Gene–Plant–Crop Relations, Springer, Berlin, pp. 251–266.

    Chapter  Google Scholar 

  • Peng S., Cassman K.G., Virmani S.S., Sheehy J., Khush G.S. (1999) Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential, Crop. Sci. 39, 1552–1559.

    Google Scholar 

  • Penning de Vries F.W.T., Rabbinge R., Groot J.J.R. (1997) Potential and attainable food production and food security in different regions, Philos. T. Roy. Soc. B 352, 917–928.

    Article  Google Scholar 

  • Pierce F.P., Nowak P. (1999) Aspects of precision farming, Adv. Agron. 67, 1–85.

    Article  Google Scholar 

  • Pretty J. (2008) Agricultural sustainability: concepts, principles and evidence, Philos. T. Roy. Soc. B 363, 447–465.

    Article  Google Scholar 

  • Rasmussen P.E., Goulding K.W.T., Brown J.R., Grace P.R., Janzen H.H., Körschens M. (1998) Long-term agroecosystems experiments: assessing agricultural sustainability and global change, Science 282, 893–896.

    Article  PubMed  CAS  Google Scholar 

  • Rembialkowska E. (2007) Quality of plant products from organic agriculture, J. Sci. Food Agr. 87, 2757–2762.

    Article  CAS  Google Scholar 

  • Rossing W.A.H., Zander P., Josien E., Groot J.C.J., Neyer B.C., Knierim A. (2007) Intergrative modelling approaches for analysis of impact of multifunctional agriculture: A review for France, Germany and The Netherlands, Agr. Ecosyst. Environ. 120, 41–57.

    Article  Google Scholar 

  • Russell G., Jarvis P.G., Monteith J.L. (1989) Absorption of radiation by canopies and stand growth, in: Russell G. (Ed.), Plant canopy: their growth, form and function, Cambridge University Press, Cambridge, pp. 21–39.

    Chapter  Google Scholar 

  • Saito K., Atlin G.N., Linquist B., Phanthaboon K., Shiraiwa T., Horie T. (2007) Performance of traditional and improved upland rice cultivars under nonfertilized and fertilized conditions in northern Laos, Crop. Sci. 47, 2473–2481.

    CAS  Google Scholar 

  • Samonte S.O.P.B., Wilson L.T., Medley J.C., Pinson S.R.M., Clung A.M., Lales J.S. (2006) Nitrogen utilization efficiency: Relationships with grain yield, grain protein and yield-related traits in rice, Agron. J. 98, 168–176.

    CAS  Google Scholar 

  • Schröder J.J., Aarts H.F.M., ten Berge H.F.M., van Keulen H., Neeteson J.J. (2003) An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use, Eur. J. Agron. 20, 33–44.

    Article  CAS  Google Scholar 

  • Sheridan H., Finn J.A., Culleton N. O’Donovan G. (2008) Plant and invertebrate diversity in grassland field margins, Agr. Ecosyst. Environ. 123, 225–232.

    Google Scholar 

  • Shibu M.E., Leffelaar P.A., van Keulen H., Aggerwal P.K. (2006) Quantitative description of soil organic matter dynamics – A review of approaches with reference to rice-based cropping systems, Geoderma 137, 1–18.

    Article  CAS  Google Scholar 

  • Sibma L., Spiertz J.H.J. (1986) Dry matter production and nitrogen utilization in cropping systems with grass, lucerne and maize. 1. Comparison of crop characteristics, growth and production, Neth. J. Agr. Sci. 34, 25–35.

    Google Scholar 

  • Sinclair T.R., De Wit C.T. (1975) Photosynthate and nitrogen requirements for seed production by various crops, Science 189, 565–567.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair T.R., Horie T. (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency – A review, Crop Sci. 29, 90–98.

    Google Scholar 

  • Spiertz J.H.J., Ellen J. (1978) Effects of nitrogen on crop development and grain growth of winter wheat in relation to assimilation and utilization of assimilates and nutrients, Neth. J. Agr. Sci. 26, 210–231.

    Google Scholar 

  • Spiertz J.H.J., De Vos N.M. (1983) Agronomical and physiological aspects of the role of nitrogen in yield formation of cereals, Plant Soil 75, 379–391.

    Article  CAS  Google Scholar 

  • Spiertz J.H.J., Sibma L. (1986) Dry matter production and nitrogen utilization in cropping systems with grass, lucerne and maize. 2. Nitrogen yield and utilization with various cropping systems and their after-effects, Neth. J. Agr. Sci. 34, 37–47.

    Google Scholar 

  • Spiertz J.H.J., Oenema O. (2005) Resource use efficiency and management of nutrients in agricultural systems in: ERSEC Ecological Book Series – 1. On sustainable agricultural systems. Tsinghua University Press and Springer, Berlin, pp. 171–183.

    Google Scholar 

  • Stehfest E., Bouwman L. (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions, Nutr. Cycl. Agroecosys. 74, 207–228.

    Article  CAS  Google Scholar 

  • Stockdale E.A., Gaunt J.L., Vos J. (1997) Soil–plant nitrogen dynamics: what concepts are required? Eur. J. Agron. 7, 145–159.

    Article  Google Scholar 

  • Stoorvogel J.J., Antle J.M., Crissman C.C., Bowen W. (2004) The tradeoff analysis model: integrated bio-physical and economic modelling of agricultural production systems, Agr. Syst. 80, 43–66.

    Google Scholar 

  • Storkey J., Westbury D.B. (2007) Managing arable weeds for biodiversity, Pest Manage. Sci. 63, 517–523.

    CAS  Google Scholar 

  • Struik P.C., Bonciarelli F. (1997) Resource use at the cropping system level, Eur. J. Agron.7, 133–143.

    Article  Google Scholar 

  • Suding K.N., Collins S.L., Gough L., Clark Ch., Cleland E.E., Gross K.L., Milchunas D.G., Pennings S. (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization, PNAS 102, 4387–4392.

    Article  PubMed  CAS  Google Scholar 

  • Swift M.J., Izac A.-M.N., van Noordwijk M. (2004) Biodiversity and ecosystem services in agricultural landscapes, Agr. Ecosyst. Environ. 104, 113–134.

    Article  Google Scholar 

  • Tait J. (2001) Science, governance and multifunctionality of European agriculture, Outlook Agr. 30, 91–95.

    Google Scholar 

  • Ten Berge H.F.M., Kropff M.J. (1995) Founding a systems research network for rice in: Bouma et al. (Eds.), Eco-regional approaches for sustainable land use and food production, Kluwer, Dordrecht, pp. 263–282.

    Google Scholar 

  • Ten Berge H.F.M., Riethoven J.J.M. (1997) Applications of a simple rice-nitrogen model in: Ando T. et al. (Eds.), Plant nutrition for sustainable food production and environment, Kluwer, Dordrecht, pp. 793–798.

    Google Scholar 

  • Tipraqsa P., Craswell E.T., Noble A.T., Schmidt-Vogt D. (2007) Resource integration for multiple benefits: Multifunctionality of integrated farming systems in northeast Thailand, Agr. Syst. 94, 694–703.

    Google Scholar 

  • Topp C.F.E., Stockdale E.A., Watson C.A., Rees R.M. (2007) Estimating resource use efficiencies in organic agriculture: a review of budgeting approaches, J. Sci. Food Agr. 87, 2782–2790.

    Article  CAS  Google Scholar 

  • UNEP (2007) Reactive Nitrogen in the Environment, Too Much or too Little of a good Thing. The Woods Hole Research Center, USA and UNEP DTIE Sustainable Consumption and Production Branch, Paris, France, 51 p. [ISBN 978 92 807 2783 8].

    Google Scholar 

  • Van Delden A. (2001) Yield and growth components of potato and wheat under organic nitrogen management, Agron. J. 93, 1370–1385.

    Google Scholar 

  • Van der Werf H.M.G., Tzilivakis J., Lewis K., Basset-Mens C. (2007) Environmental impacts of farm scenarios according to five assessment methods, Agr. Ecosyst. Environ. 118, 327–338.

    Article  Google Scholar 

  • Van Egmond K., Bresser T., Bouwman L. (2002) The European Nitrogen Case, Ambio 31, 72–78.

    PubMed  Google Scholar 

  • Van Ginkel M., Ortiz-Monasterio I., Trethowan R., Hernandez E. (2001) Methodology for selecting segregating populations for improved N-use efficiency in bread wheat, Euphytica 119, 223–230.

    Article  Google Scholar 

  • Van Keulen H. (2007) Quantitative analyses of natural resource management options at different scales, Agr. Syst. 94, 768–783.

    Google Scholar 

  • Van Keulen H., Aarts H.F.M., Habekotte B., van der Meer H.G., Spiertz J.H.J. (2000) Soil–plant–animal relations in nutrient cycling: the case of dairy farming system ‘De Marke’, Eur. J. Agron. 13, 245–261.

    Article  Google Scholar 

  • Van Noordwijk M., Cadish G. (2002) Access and excess problems in plant nutrition, Plant Soil 247, 25–40.

    Article  Google Scholar 

  • Van Ruijven J., Berendse F. (2005) Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms, PNAS 102, 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins R.J. (2008) Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems, Philos. T. Roy. Soc. B 363, 517–525.

    Article  CAS  Google Scholar 

  • Wilkinson P., Smith K.R., Joffe M., Haines A. (2007) Energy and Health 1: A global perspective on energy: health effects and injustices, The Lancet 370, 965–978.

    Article  Google Scholar 

  • Yang H.S. (2006) Resource management, soil fertility and sustainable crop production: Experiences of China, Agr. Ecosyst. Environ. 116, 27–33.

    Article  Google Scholar 

  • Yang X., Bouman B.A.M., Wang H., Wang Z., Zhao J., Chen B. (2005) Performance of temperate aerobic rice under different water regimes, Agr. Water Manage. 74, 107–122.

    Article  Google Scholar 

  • Yin X., Van Laar H.H. (2005) Crop Systems Dynamics: An ecophysiological simulation model for genotype-by-environment interactions. Wageningen, The Netherlands, 153 p. [ISBN 907 69 985 82].

    Google Scholar 

  • Zhang L., Spiertz J.H.J., Zhang S., Li B., van der Werf W. (2008) Nitrogen economy in relay intercropping systems of wheat and cotton, Plant Soil 303, 55–68.

    Article  CAS  Google Scholar 

  • Zhao J., Luo Q., Deng H., Yan Y. (2008) Opportunities and challenges of sustainable agricultural development in China, Philos. T. Roy. Soc. B 363, 893–904.

    Article  Google Scholar 

Download references

Acknowledgements

The comments of Prof. Oene Oenema (Alterra, Environmental Sciences Group), Dr. Jacques Neeteson (Plant Research International, Plant Sciences Group) and Dr. Jan Vos (Crop and Weed Ecology, Plant Sciences Group) of Wageningen University and Research Center have contributed to shaping the content of the paper and to improving the scientific soundness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. J. Spiertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Spiertz, J.H.J. (2009). Nitrogen, Sustainable Agriculture and Food Security: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_39

Download citation

Publish with us

Policies and ethics