Skip to main content

Symbiotic Nitrogen Fixation in Legume Nodules: Process and Signaling: A Review

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

The Green Revolution was accompanied by a huge increase in the application of fertilizers, particularly nitrogen. Recent studies indicate that a sizeable proportion of the human population depends on synthetic nitrogen (N) fertilizers to provide the 53 million t N that is harvested globally in food crops each year. Nitrogen fertilizers affect the balance of the global nitrogen cycle, pollute groundwater and increase atmospheric nitrous oxide (N2O), a potent “greenhouse” gas. The production of nitrogen fertilizer by industrial nitrogen fixation not only depletes our finite reserves of fossil fuels, but also generates large quantities of carbon dioxide, contributing to global warming. The process of biological nitrogen fixation offers an economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources. Recent studies show that in irrigated cropping systems, legume N is generally less susceptible to loss processes than fertilizers. Biological nitrogen fixation (BNF) has provided a number of useful paradigms for both basic and applied research. Establishing a fully functional symbiosis requires a successful completion of numerous steps that lead from recognition signals exchanged between the plant and bacteria to the differentiation and operation of root nodules, the plant organ in which nitrogen fixation takes place. The initial sensing of the two organisms by each other starts with the release of root exudates by the plant that include flavonoids and nutrients such as organic acids and amino acids. Flavonoids secreted by the host plant into the rhizosphere function as inducers of the rhizobial nod genes. nod gene induction results in the secretion of lipochitin oligosaccharides that are thought to bind to specific plant receptor kinases that contain LysM motifs, such as NFR1 and NFR5 in Lotus japonicus and LYK3 and LTK4 in Medicago truncatula. This initiates a complex signaling pathway involving calcium spiking in root hairs. The result is that the root hairs curl and trap the rhizobia, which then enter the root hair through tubular structures known as infection threads that are formed by the plant. The infection threads then grow into the developed nodule tissue. Ultimately, the invading bacteria are taken into the plant cell by a type of endocytosis in which they are surrounded by a plant-derived peribacteroid membrane (PBM). The resulting symbiosomes fill the plant cell cytoplasm and as plant and bacterial metabolism develops, the bacteria become mature bacteroids able to convert atmospheric nitrogen to ammonium. To increase knowledge of this system of particular importance in sustainable agriculture, major emphasis should be laid on the basic research. More work is needed on the genes responsible in rhizobia and legumes, the structural chemical bases of rhizobia/legume communication, and signal transduction pathways responsible for the finely orchestrated induction of the symbiosis-specific genes involved in nodule development and nitrogen fixation. This review unfolds the various events involved in the progression of symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asad S., Fang Y., Wyco K.L., Hirsch A.M. (1994) Isolation and characterization of cDNA and genomic clones of MsENOD40; transcripts are detected in meristematic cells of alfalfa. Protoplasma 183, 10–23.

    CAS  Google Scholar 

  • Barbour W.M., Hattermann D.R., Stacey G. (1991) Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl. Environ. Microb. 57, 2635–2639.

    CAS  Google Scholar 

  • Bauer P., Ratet P., Crespi M.D., Schultze M., Kondorosi A. (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsENOD12A expression patterns in alfalfa roots. Plant J. 10, 91–105.

    CAS  Google Scholar 

  • Bergman K., Nulty E., Su L.H. (1991) Mutations in the 2 flagellin genes of Rhizobium meliloti. J. Bacteriol. 173, 3716–3723.

    CAS  Google Scholar 

  • Bladergroen M., Spaink H.P. (1998) Genes and signal molecules involved in the rhizobia Leguminoseae symbiosis. Curr. Opin. Plant Biol. 1, 353–359.

    PubMed  CAS  Google Scholar 

  • Bohlool B.B., Ladha J.K., Garrity D.P., George T. (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141, 1–11.

    CAS  Google Scholar 

  • Bonfante P. (2003) Plants, mycorrhizal fungi and endobacteria: a dialogue among cells and genomes. Biol. Bull-US 204, 215–220.

    CAS  Google Scholar 

  • Bourdineaud J.P., Bono J.J., Ranjeva R., Cullimore J.V. (1995) Enzymatic radiolabelling to a high specific activity of legume lipo-oligosaccharidic nodulation factors from Rhizobium meliloti. Biochem. J. 306, 259–264.

    CAS  Google Scholar 

  • Brencic A., Winans S.C. (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. R. 69, 155–194.

    CAS  Google Scholar 

  • Brewin N.J. (2004) Plant cell wall remodelling in the rhizobium-legume symbiosis. Crit. Rev. Plant Sci. 23, 293–316.

    CAS  Google Scholar 

  • Broughton W.J., Jabbouri S., Perret X. (2000) Keys to symbiotic harmony. J. Bacteriol. 182, 5641–5652.

    PubMed  CAS  Google Scholar 

  • Cárdenas L., Feijó J.A., Kunkel J.G., Sánchez F., Holdaway-Clarke T., Hepler P.K., Quinto C. (1999) Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant J. 19, 347–52.

    PubMed  Google Scholar 

  • Cardenas L., Holdawa-Clarke T.L., Sanchez F., Quinto C., Feijo J.A., Kunkel J.G., Hepler P.K. (2000) Ion changes in legume root hairs responding to Nod factors. Plant Physiol. 123, 443–451.

    PubMed  CAS  Google Scholar 

  • Cárdenas L., Vidali L., Domínguez J., Pérez H., Sánchez F., Hepler P.K., Quinto C. (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol. 116, 871–877.

    Google Scholar 

  • Catalano C.M., Lane W.S., Sherrier D.J. (2004) Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25, 519–531.

    PubMed  CAS  Google Scholar 

  • Catoira R., Galera C., De Billy F., Penmetsa R.V., Journet E.P., Maillet F., Rosenberg C., Cook D., Gough C., Dénarié J. (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12, 1647–1666.

    PubMed  CAS  Google Scholar 

  • Cermola M., Fedorova E., Taté R., Riccio A., Favre R., Patriarca E.J. (2000) Nodule invasion and symbiosome differentiation during Rhizobium etli Phaseolus vulgaris symbiosis. Mol. Plant Microbe Int. 13, 733–741.

    CAS  Google Scholar 

  • Charron D., Pingret J.L., Chabaud M., Journet E.P., Barker D.G. (2004) Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2 + spiking and specific ENOD gene expression. Plant Physiol. 136, 3582–3593.

    PubMed  CAS  Google Scholar 

  • Chen T.H.H., Murata N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5, 250–257.

    PubMed  CAS  Google Scholar 

  • Coba de la Pena T., Frugier F., McKhann H.I., Bauer P., Brown S., Kondorosi A., Crespi M. (1997) A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J. 11, 407–420.

    PubMed  CAS  Google Scholar 

  • Cook D.R., Dreyer D., Bonnet D., Howell M., Nony E., Vandenbosch K. (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7, 43–55.

    PubMed  CAS  Google Scholar 

  • Cooper J. (2004) Multiple responses of rhizobia to flavonoids during legume root infection. In: Callow J.A. (Ed.), Advances in Botanical Research: Incorporating Advances in Plant Pathology. Academic, London, pp. 1–62.

    Google Scholar 

  • Cooper J., Long S.R. (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6, 215–225.

    PubMed  CAS  Google Scholar 

  • Crespi M., Galvez S. (2000) Molecular mechanisms in root nodule development. J. Plant Growth Regul. 19, 155–166.

    PubMed  CAS  Google Scholar 

  • Crespi M.D., Jurkevitch E., Poiret M., D’Aubenton-Carafa Y., Petrovics G., Kondorosi E., Kondorosi A. (1994) Enod40, a gene expressed during nodule organogenesis, codes for a nontranslatable RNA involved in plant growth. EMBO J. 13, 5099–5112.

    PubMed  CAS  Google Scholar 

  • Crockard M., Bjourson A., Dazzo F., Cooper J. (2002) A white clover nodulin gene, dd23b, encoding a cysteine cluster protein, is expressed in roots during the very early stages of interaction with Rhizobium leguminosarum biovar trifolii and after treatment with chitolipooligosaccharide Nod factors. J. Plant Res. 115, 439–447.

    PubMed  CAS  Google Scholar 

  • Cullimore J.V., Ranjeva R., Bono J.J. (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci. 6, 24–30.

    PubMed  CAS  Google Scholar 

  • Cunningham S., Kollmeyer W.D., Stacey G. (1991) Chemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum. Appl. Environ. Microb. 57, 1886–1892.

    CAS  Google Scholar 

  • De Ruijter N.C.A., Rook M.B., Bisseling T., Emons A.M.C. (1998) Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip. Plant J. 13, 341–350.

    Google Scholar 

  • De’narie J., Debelle F., Truchet G., Prome J.C. (1993) Rhizobium and legume nodulation: a molecular dialogue, In: Palacios R., Moira J., Newton W.E. (Eds.), New Horizons in Nitrogen Fixation. Kluwer, Dordrecht, the Netherlands, pp. 19–30.

    Google Scholar 

  • Denarie J., Debelle F., Prome J.C. (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signalling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65, 503–535.

    PubMed  CAS  Google Scholar 

  • Downie J.A. (1998) Functions of rhizobial nodulation genes. In: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae. Kluwer, Dordrecht, The Netherlands, pp. 387–402.

    Google Scholar 

  • Downie J.A., Walker S.A. (1999) Plant responses to nodulation factors. Curr. Opin. Plant Biol. 2, 483–489.

    PubMed  CAS  Google Scholar 

  • Doyle J.J. (2001) Leguminosae. In: Brenner S., Miller J.H. (Eds.), Encyclopedia of Genetics. Academic, San Diego, pp. 1081–1085.

    Google Scholar 

  • Ehrhardt D.W., Atkinson E.M., Faull K.F., Freedberg D.I., Sutherlin D.P., Armstrong R., Long S.R. (1995) In Vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J. Bacteriol. 177, 6237–6245.

    PubMed  CAS  Google Scholar 

  • Ehrhardt D.W., Wais R., Long S.R. (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85, 673–681.

    PubMed  CAS  Google Scholar 

  • Emons A.M.C., Mulder B. (2000) Nodulation factors trigger an increase of fine bundles of subapical actin filaments in Vicia root hairs: implication for root hair curling around bacteria. In: De Wit P.J.G.M., Bisseling T., Stiekema J.W. (Eds.), Biology of Plant-Microbe Interactions. The International Society of Molecular Plant-Microbe Interaction, St. Paul, Minnesota, Vol. 2, pp. 272–276.

    CAS  Google Scholar 

  • Endre G., Kereszt A., Kevei Z., Mihacea S., Kalo P., Kiss G.B. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966.

    PubMed  CAS  Google Scholar 

  • Engstrom E.M., Ehrhardt D.W., Mitra R.M., Long S.R. (2002) Pharmacological analysis of nod factor-induced calcium spiking in Medicago truncatula. Evidence for the requirement of type IIA calcium pumps and phosphoinositide signaling. Plant Physiol. 128, 1390–1401.

    PubMed  CAS  Google Scholar 

  • Farrand S.K., Van Berkum P.B., Oger P. (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int. J. Syst. Evol. Microbiol. 53, 1681–1687.

    CAS  Google Scholar 

  • Fellay R., Perret X., Viprey V., Broughton W.J., Brenner S. (1995) Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol. Microbiol. 16, 657–667.

    PubMed  CAS  Google Scholar 

  • Felle H.H., Kondorosi E., Kondorosi A., Schultze M. (1996) Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J. 10, 295–301.

    CAS  Google Scholar 

  • Felle H.H., Kondorosi E., Kondorosi A., Schultze M. (1998) The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J. 13, 455–463.

    CAS  Google Scholar 

  • Felle H.H., Kondorosi E., Kondorosi A., Schultze M. (1999) Elevation of the cytosolic free Ca2 + is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiol. 121, 273–279.

    PubMed  CAS  Google Scholar 

  • Felle H.H., Kondorosi E., Kondorosi A., Schultze M. (2000) How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors. Plant Physiol. 124, 1373–1380.

    PubMed  CAS  Google Scholar 

  • Gage D.J. (2002) Analysis of infection thread development using GFP- and dsRED-expressing Sinorhizobium meliloti. J. Bacteriol. 184, 7042–7046.

    CAS  Google Scholar 

  • Gage D.J., Margolin W. (2000) Hanging by a thread: invasion of legume plants by rhizobia. Curr. Opin. Microbiol. 3, 613–617.

    PubMed  CAS  Google Scholar 

  • Gagnon H., Ibrahim R.K. (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol. Plant Microbe Int. 11, 988–998.

    CAS  Google Scholar 

  • Gehring C.A., Irving H.R., Kabbara A.A., Parish R.W., Boukli N.M., Broughton W.J. (1997) Rapid, plateau-like increases in intracellular free calcium are associated with nod-factor-induced root-hair deformation. Mol. Plant Microbe Int. 10, 791–802.

    CAS  Google Scholar 

  • Geremia R.A., Mergaert P., Geelen D., Van Montagu M., Holsters M. (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylgucosamin-yltransferase. Proc. Natl Acad. Sci. (USA) 91, 2669–2673.

    CAS  Google Scholar 

  • Geurts R., Bisseling T. (2002) Rhizobium Nod factor perception and signalling. Plant Cell 14, S239–S249.

    PubMed  CAS  Google Scholar 

  • Geurts R., Fedorova E., Bisseling T. (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr. Opin. Plant Biol. 8, 346–352.

    PubMed  CAS  Google Scholar 

  • Gottfert M., Holzhauser D., Bani D., Hennecke H. (1992) Structural and functional analysis of 2 different nodD genes in Bradyrhizobium japonicum USDA110. Mol. Plant Microbe Int. 5, 257–265.

    CAS  Google Scholar 

  • Graham T.L. (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594–603.

    PubMed  CAS  Google Scholar 

  • Hadri A., Bisseling T. (1998) Responses of the plant to nod factors, the Rhizobiaceae. In: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), Kluwer, Dordrecht, The Netherlands, pp. 403–416.

    Google Scholar 

  • Hanin M., Jabbouri S., Broughton W.J., Fellay R. (1998) SyrM1 of Rhizobium sp. NGR234 activates transcription of symbiotic loci and controls the level of sulfated Nod factors. Mol. Plant Microbe Int. 11, 343–350.

    CAS  Google Scholar 

  • Harborne J.B., Williams C.A. (2001) Anthocyanins and other flavonoids. Nat. Prod. Rep. 18, 310–333.

    PubMed  CAS  Google Scholar 

  • Harborne J.B., Williams C.A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481–504.

    PubMed  CAS  Google Scholar 

  • Harris J.M., Wais R., Long S.R. (2003) Rhizobium-induced calcium spiking in Lotus japonicus. Mol. Plant Microbe Int. 16, 335–341.

    CAS  Google Scholar 

  • Hartwig U.A., Maxwell C.A., Joseph C.M., Phillips D.A. (1990) Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172, 2769–2773.

    PubMed  CAS  Google Scholar 

  • Hartwig U.A., Phillips D.A. (1991) Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95, 804–807.

    PubMed  CAS  Google Scholar 

  • Heeb S., Haas D. (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol. Plant Microbe Int. 14, 1351–1363.

    CAS  Google Scholar 

  • Heidstra R., Geurts R., Franssen H., Spaink H.P., Van Kammen A., Bisseling T. (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol. 105, 787–797.

    PubMed  CAS  Google Scholar 

  • Hirsch A.M. (1992) Developmental biology of legume nodulation. New Phytol. 122, 211–237.

    Google Scholar 

  • Hirsch A.M., Bhuvaneswari T.V., Torrey J.G., Bisseling T. (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc. Natl Acad. Sci. (USA) 86, 1244–1248.

    CAS  Google Scholar 

  • Hirsch A.M., Fang Y. (1994) Plant hormones and nodulation: what’s the connection. Plant Mol. Biol. 26, 5–9.

    PubMed  CAS  Google Scholar 

  • Hirsch A.M., Lum M.R., Downie J.A. (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol. 127, 1484–1492.

    PubMed  CAS  Google Scholar 

  • Hirsch A.M. (2004) Plant-microbe symbioses: a continuum from commensalism to parasitism. Symbiosis 37, 345–363.

    CAS  Google Scholar 

  • Horvath B., Heidstra R., Lados M., Moerman M., Spaink H.P., Prome J.C., Vankammen A., Bisseling T. (1993) Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene-expression in pea root hairs. Plant J. 4, 727–733.

    PubMed  CAS  Google Scholar 

  • Ielpi L., Dylan T., Ditta G.S., Helinski D.R., Stanfield S.W. (1990) The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta- (1-2)-glucan. J. Biol. Chem. 265, 2843–2851.

    PubMed  CAS  Google Scholar 

  • John M., Rohrig H., Schmidt J., Wieneke U., Schell J. (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc. Natl Acad. Sci. (USA) 90, 625–629.

    CAS  Google Scholar 

  • Kaló P., Gleason C., Edwards A., Marsh J., Mitra R.M., Hirsch S., Jakab J., Sims S., Long S.R., Rogers J., Kiss G.B., Downie J.A., Oldroyd G.E.D. (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308, 1786–1789.

    PubMed  Google Scholar 

  • Kape R., Parniske M., Werner D. (1991) Chemotaxis and nod gene activity of Bradyrhizobium japonicum in response to hydroxycinnamic acids and isoflavonoids. Appl. Environ. Microbiol. 57, 316–319.

    PubMed  CAS  Google Scholar 

  • Kinzig A.P., Socolow R.H. (1994) Human impacts on the nitrogen cycle. Phys. Today 47, 24–31.

    Google Scholar 

  • Kouchi H., Hata S. (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238, 106–119.

    PubMed  CAS  Google Scholar 

  • Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J.C., Dénarié J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784.

    PubMed  CAS  Google Scholar 

  • Limpens E., Bisseling T. (2003) Signaling in symbiosis. Curr. Opin. Plant Biol. 6, 343–350.

    PubMed  CAS  Google Scholar 

  • Limpens E., Franken C., Smit P., Willemse J., Bisseling T., Geurts R. (2003) LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 24, 630–633.

    Google Scholar 

  • Lodwig E.M., Hosie A.H.F., Bourdès A., Findlay K., Allaway D., Karunakaran R., Downie J.A., Poole P.S. (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422, 722–726.

    PubMed  CAS  Google Scholar 

  • Lodwig E.M., Leonard M., Marroqui S., Wheeler T.R., Findlay K., Downie J.A., Poole P.S. (2005) Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol. Plant Microbe Int. 18, 67–74.

    CAS  Google Scholar 

  • Long S.R. (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8, 1885–1898.

    PubMed  CAS  Google Scholar 

  • Lopez-Lara I.M., van den Berg J.D.J., Thomas-dates J.E., Glushka J., Lugtenberg B.J.J., Spaink H.P. (1995) Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol. Microbiol. 15, 627–638.

    CAS  Google Scholar 

  • Madsen E.B., Madsen L.H., Radutoiu S., Olbryt M., Rakwalska M., Szczyglowski K., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J. (2003) A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature 425, 637–640.

    PubMed  CAS  Google Scholar 

  • Michiels J., De Wilde P., Vanderleyden J. (1993) Sequence of the Rhizobium leguminosarum biovar phaseoli syrM gene. Nucleic Acids Res. 21, 3893.

    PubMed  CAS  Google Scholar 

  • Michiels J., Pelemans H., Vlassak K., Verreth C., Vanderleyden J. (1995) Identification and characterization of a Rhizobium leguminosarum bv. phaseoli gene that is important for nodulation competitiveness and shows structural homology to a Rhizobium fredii host-inducible gene. Mol. Plant Microbe Int. 8, 468–472.

    CAS  Google Scholar 

  • Minami E., Kouchi H., Cohn J.R., Ogawa T., Stacey G. (1996) Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules. Plant J. 10, 23–32.

    PubMed  CAS  Google Scholar 

  • Mitra R.M., Shaw S.L., Long S.R. (2004) Six non-nodulating plant mutants defective for nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc. Natl Acad. Sci. (USA) 101, 10217–10222.

    CAS  Google Scholar 

  • Mulligan J.T., Long S.R. (1989) A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics 122, 7–18.

    PubMed  CAS  Google Scholar 

  • Nap J.P., Bisseling T. (1990) Developmental biology of a plant-prokaryotic symbiosis: the legume root nodule. Science 250, 948–954.

    PubMed  CAS  Google Scholar 

  • Oldroyd G.E.D., Long S.R. (2003) Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod actor signaling. Plant Physiol. 131, 1027–1032.

    PubMed  CAS  Google Scholar 

  • Oldroyd G.E.D., Downie J.A. (2004) Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell Biol. 5, 566–576.

    PubMed  CAS  Google Scholar 

  • Oldroyd G.E.D., Mitra R.M., Wais R.J., Long S.R. (2001) Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant J. 28, 191–199.

    PubMed  CAS  Google Scholar 

  • Parniske M., Downie J.A. (2003) Plant biology: locks, keys and symbioses. Nature 425, 569–570.

    PubMed  CAS  Google Scholar 

  • Peoples M.B., Herridge D.F., Ladha J.K. (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174, 3–28.

    Google Scholar 

  • Peoples M.B., Crasswell E.T. (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141, 13–39.

    Google Scholar 

  • Perret X., Staehelin C., Broughton W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. R. 64, 180–201.

    CAS  Google Scholar 

  • Phillips D.A., Dakora F.D., Sande E.S., Joseph C.M., Zon J. (1994) Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. Plant Soil 161, 69–80.

    CAS  Google Scholar 

  • Phillips D.A., Joseph C.M., Maxwell C.A. (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol. 99, 1526–1531.

    PubMed  CAS  Google Scholar 

  • Pichon M., Journet E.-P., Dedieu A., de Billy F., Truchet G., Barker D.G. (1992) Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4, 1199–1211.

    PubMed  CAS  Google Scholar 

  • Ponting C.P., Aravind L., Schultz J., Bork P., Koonin E.V. (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J. Mol. Biol. 289, 729–745.

    CAS  Google Scholar 

  • Prell J., Poole P. (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 14, 161–168.

    PubMed  CAS  Google Scholar 

  • Radutoiu S., Madsen L.H., Madsen E.M., Felle H.H., Umehara Y., Grønlund M., Sato S., Nakamura Y., Tabata S., Sandal N., Stougaard J. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.

    PubMed  CAS  Google Scholar 

  • Relic B., Perret X., Estrada-Garcia M.T., Kopcinska J., Golinowski W., Krishnan H.B., Pueppke S.G., Broughton W.J. (1994) Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13, 171–178.

    PubMed  CAS  Google Scholar 

  • Ridge R.W., Kim R., Yoshida F. (1998) The diversity of lectin-detectable sugar residues on root hair tips of selected legumes correlates with the diversity of their host ranges for rhizobia. Protoplasma 202, 84–90.

    CAS  Google Scholar 

  • Robertson J.L., Holliday T., Matthysse A.G. (1988) Mapping of Agrobacterium tumefaciens chromosomal genes affecting cellulose synthesis and bacterial attachment to host cells. J. Bacteriol. 170, 1408–1411.

    PubMed  CAS  Google Scholar 

  • Robinson J.B., Bauer W.D. (1993) Relationships between C-4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. J. Bacteriol. 175, 2284–2291.

    CAS  Google Scholar 

  • Roche P., Debelle F., Maillet F., Maillet L., Faucher C., Truchet G., Denarie J., Prome J.C. (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67, 1131–1143.

    PubMed  CAS  Google Scholar 

  • Rohrig H., Schmidt J., Wieneke U., Kondorosi E., Barlier I., Schell J., John M. (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone. Proc. Natl Acad. Sci. (USA) 91, 3122–3126.

    CAS  Google Scholar 

  • Roth E., Jeon K., Stacey G. (1988) Molecular Genetics of Plant-Microbe Interactions. In: Palacios R., Verma D.P.S. (Eds.), American Phytopathology Society, St Paul, MN, pp. 220–225.

    Google Scholar 

  • Rozan P., Kuo Y.H., Lambein F. (2000) Free amino acids present in commercially available seedlings sold for human consumption. A potential hazard for consumers. J. Agr. Food Chem. 48, 716–723.

    CAS  Google Scholar 

  • Rozan P., Kuo Y.H., Lambein F. (2001) Amino acids in seeds and seedlings of the genus Lens. Phytochemistry 58, 281–289.

    PubMed  CAS  Google Scholar 

  • Rudiger H., Gabius H.J. (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconjugate J. 18, 589–613.

    CAS  Google Scholar 

  • Sawada H., Kuykendall L.D., Young J.M. (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Appl. Microbiol. 49, 155–179.

    PubMed  CAS  Google Scholar 

  • Schell M.A. (1993) Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47, 597–626.

    PubMed  CAS  Google Scholar 

  • Scheres B., Wiel C.V.D., Zalensky A., Horvath B., Spaink H., van Eck H., Zwartkruis F., Wolters A., Gloudemans T., van Kammen A., Bisseling T. (1990) The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60, 281–294.

    PubMed  CAS  Google Scholar 

  • Schlaman H.R., Phillips D.A., Kondorosi E. (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae. Kluwer, Dordrecht, The Netherlands, pp. 361–386.

    Google Scholar 

  • Schlaman H.R., Spaink H.P., Okker R.J., Lugtenberg B.J. (1989) Subcellular localization of the nodD gene product in Rhizobium leguminosarum. J. Bacteriol. 171, 4686–4693.

    CAS  Google Scholar 

  • Schultze M., Kondorosi A. (1998) Regulation of symbiotic root nodule development. Annu. Rev. Genet. 32, 33–57.

    PubMed  CAS  Google Scholar 

  • Schultze M., Kondorosi É., Ratet P., Buiré M., Kondorosi A. (1994) Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156, 1–75.

    CAS  Google Scholar 

  • Shaw S.L., Long S.R. (2003) Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol. 131, 976–984.

    PubMed  CAS  Google Scholar 

  • Shi L., Twary S.N., Yoshioka H., Gregerson R.G., Miller S.S., Samac D.A., Gantt J.S., Unfeker P.J., Vance C.P. (1997) Nitrogen assimilation in alfalfa: isolation and characterization of an asparagines synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. Plant Cell 9, 1339–1356.

    PubMed  CAS  Google Scholar 

  • Smit P., Raedts J., Portyanko V., Debellé F., Gough C., Bisseling T., Geurts R. (2005) NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308, 1789–1791.

    PubMed  CAS  Google Scholar 

  • Spaink H.P. (1992) Rhizobial lipo-oligosaccharides: answers and questions. Plant Mol. Biol. 20, 977–986.

    PubMed  CAS  Google Scholar 

  • Spaink H.P. (1996) Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit. Rev. Plant Sci. 15, 559–582.

    CAS  Google Scholar 

  • Spaink H.P. (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol. 54, 257–288.

    PubMed  CAS  Google Scholar 

  • Spaink H.P., Wijfjes A.H.M., van V.T.B., Kijne J.W., Lugtenberg B.J.J. (1993) Rhizobial lipo-oligosaccharide signals and their role in plant morphogenesis; are analogous lipophilic chitin derivatives produced by the plant? Aust. J. Plant Physiol. 20, 381–392.

    Google Scholar 

  • Stacey G., Libault M., Brechenmacher L., Wan J., May G.D. (2006) Genetics and functional genomics of legume nodulation. Curr. Opin. Plant Biol. 9, 110–121.

    PubMed  CAS  Google Scholar 

  • Stanfield S.W., Ielpi L., O’Brochta D., Helinski D.R., Ditta G.S. (1988) The ndvA gene product of Rhizobium meliloti is required for beta-(1-2)glucan production and has homology to the ATP-binding export protein HlyB. J. Bacteriol. 170, 3523–3530.

    PubMed  CAS  Google Scholar 

  • Steen A., Buist G., Leenhouts K.J., El Khattabi M., Grijpstra F., Zomer A.L., Venema G., Kuipers O.P., Kok J. (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem. 278, 23874–23881.

    PubMed  CAS  Google Scholar 

  • Stracke S., Kistner C., Yoshida S., Mulder L., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J., Szczyglowski K., Parniske M. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962.

    PubMed  CAS  Google Scholar 

  • Swanson J.A., Mulligan J.T., Long S.R. (1993) Regulation of syrM and nodD3 in Rhizobium meliloti. Genetics 134, 435–444.

    PubMed  CAS  Google Scholar 

  • Timmers A.C.J., Auriac M.C., de Billy F., Truchet G. (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development 125, 339–349.

    PubMed  CAS  Google Scholar 

  • Truchet G., Roche P., Lerouge P., Vasse J., Camut S., Debilly F., Prome J.C., Denarie J. (1991) Sulfated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351, 670–673.

    CAS  Google Scholar 

  • Udvardi M.K., Day D.A. (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Phys. 48, 493–523.

    CAS  Google Scholar 

  • van Brussel A.A.N., Bakhuizen R., Van Spronsen P.C., Spaink H.P., Tak T., Lugtenberg B.J.J., Kijne J.W. (1992) Induction of preinfection thread structures in the leguminous host plant by mitogenic lipooligosaccharides of Rhizobium. Science 257, 70–72.

    PubMed  Google Scholar 

  • van Brussel A.A.N., Tak T., Boot T., Kijne J.W. (2002) Autoregulation of root nodule formation: signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp. nigra. Mol. Plant Microbe Int. 15, 341–349.

    Google Scholar 

  • van Kammen A. (1984) Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol. Biol. Rep. 2, 43–45.

    Google Scholar 

  • van Rhijn P., Feys B., Verreth C., Vanderleyden J. (1993) Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J. Bacteriol. 175, 438–447.

    PubMed  Google Scholar 

  • Vance C.P., Gantt J.S. (1992) Control of nitrogen and carbon metabolism in root nodules. Physiol. Plantarum 85, 266–274.

    CAS  Google Scholar 

  • Wais R.J., Galera C., Oldroyd G., Catoira R., Penmetsa R.V., Cook D., Gough C., Denarie J., Long S.R. (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc. Natl Acad. Sci. (USA) 97, 13407–13412.

    Google Scholar 

  • Wais R.J., Keating D.H., Long S.R. (2002) Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiol. 129, 211–224.

    PubMed  CAS  Google Scholar 

  • Walker S.A., Viprey V., Downie J.A. (2000) Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc. Natl Acad. Sci. (USA) 97, 13413–13418.

    CAS  Google Scholar 

  • Willems A., Collins M.D. (1993) Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43, 305–313.

    PubMed  CAS  Google Scholar 

  • Yang W.C., Katinakis P., Hendriks P., Smolders A., de Vries F., Spree J., van Kammen A., Bisseling T., Franssen H. (1993) Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J. 3, 573–585.

    PubMed  CAS  Google Scholar 

  • Zuanazzi J., Clergeot P.H., Quirion J.C., Husson H.P., Kondorosi A., Ratet P. (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol. Plant Microbe Int. 11, 784–794.

    CAS  Google Scholar 

Download references

Acknowledgment

The financial support provided by Council of Scientific and Industrial Research, New Delhi, India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Garg, N., Geetanjali (2009). Symbiotic Nitrogen Fixation in Legume Nodules: Process and Signaling: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_32

Download citation

Publish with us

Policies and ethics