Skip to main content

Saffron, An Alternative Crop for Sustainable Agricultural Systems: A Review

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

Saffron (Crocus sativus L.) is an autumnal flowering geophite whose dried stigmas, well known for their aromatic and colouring power, have been used since immemorial time as a spice in human nutrition, for medicinal purposes and as a dye. Many doubts remain on its origin; it was probably selected and domesticated in Crete during the Late Bronze Age. Saffron is a triploid geophyte species, self- and out-sterile and mostly male-sterile and therefore unable to produce seed, that reproduces by means of corms. Furthermore, it has a reverse biological cycle compared with the majority of cultivated and spontaneous plants: flowering first in October–November, then vegetative development until May, which means that the vegetative development is not directly important for production of stigmas, but for the production of new corms. Due to its unique biological, physiological and agronomic traits, saffron is able to exploit marginal land and to be included in low-input cropping systems, representing an alternative viable crop for sustainable agriculture. Notwithstanding this great potential and the considerable increase in new generation consumer demand for saffron, the future of the plant is still uncertain. Indeed, the main obstacles to saffron production are: (1) the limited areas of cultivation in countries where it is traditionally grown, (2) the great amount of sophisticated spice, (3) management techniques executed by hand, and (4) the very high price of the spice. Here we review the main biological, genetic and ecological traits associated with agronomic management techniques of saffron in relation to environmental conditions. Colour, taste and aroma are the essential features on which the quality of saffron stigmas is founded. In turn, these aspects are strictly connected with the biomolecular composition of the stigmas, namely, the carotenoids and their derivatives. With this in mind, the biosynthetic pathway that leads to the formation of saffron secondary metabolites and their abundance in the spice is presented, together with the biomedical properties commonly associated with saffron. Furthermore, a detailed overview of the more recent instrumental methods to assess the quality of saffron, strictly from a chemical point of view, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev F.I. (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227, 20–25.

    CAS  Google Scholar 

  • Abdullaev F.I., Espinosa-Aguirre J.J. (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect. Prev. 28, 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Abdullaev F.I., Riveron-Negrete L., Caballero-Ortega H., Herdandez J.M., Perez-Lopez I., Pereda-Miranda R., Espinosa-Aguirre J.J. (2003) Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicol. Vitro 17, 731–736.

    Article  CAS  Google Scholar 

  • Ahmad A.S., Ansari M.A., Ahmad M., Muzamil S.S., Yousuf S., Hoda M.N., Islam F. (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol. Biochem. Be. 81, 805–813.

    Article  CAS  Google Scholar 

  • Ait-Oubahou A., El-Otmani M. (1999) Saffron cultivation in Morocco. In: Negbi M. (Ed.), Saffron: Crocus sativus L. Harwood Academic Publishers, Australia, pp. 87–94.

    Google Scholar 

  • Alonso G.L., Varon R., Gomez R., Navarro F. Salinas M.R. (1990) Auto-oxidation in saffron at 40C and 75% humidity. J. Food Sci. 55, 595–596.

    Article  Google Scholar 

  • Alvarez-Orti M., Gomez-Gomez L., Rubio A., Escribano J., Pardo J., Jimenez F., Fernandez J.A. (2004) Development and Gene Expression in saffron corms. Proceedings of the First International Symposium on Saffron Biology and Biotechnology, Acta Hort. 650, 141–153.

    CAS  Google Scholar 

  • Assimiadis M.K., Tarantilis P.A., Polissiou M.G. (1998) UV–Vis, FT-Raman, and 1H NMR spectroscopies of cis-trans carotenoid from saffron (Crocus sativus). Appl. Spectrosc. 52, 519–522.

    Article  CAS  Google Scholar 

  • Azizbekova N.S.H., Milyaeva E.L. (1999) Saffron in cultivation in Azerbaijan. In: Negbi M. (Ed.), Saffron: Crocus sativus L. Harwood Academic Publishers, Australia, pp. 63–71.

    Google Scholar 

  • Bali A.S., Sagwal S.S. (1987) Saffron – a cash crop of Kashmir Agr. Situation India, pp. 965–968.

    Google Scholar 

  • Basker D., Negbi M. (1983) The use of Saffron. Eco. Bot. 37, 228–236.

    Article  CAS  Google Scholar 

  • Battaglia E. (1963) Apomixis. In: Maheshwari P. (Ed.), Recent Advances in the Embryology of Angiosperms. International Society of Plant Morphology, University of Dehli.

    Google Scholar 

  • Behnia M.R., Estilai A., Ehdaie B. (1999) Application of fertilizer for increased saffron yield. J. Agr. Crop Sci. 182, 9–15.

    Article  CAS  Google Scholar 

  • Behzad S., Razavi M., Mahajeri M. (1992) The effect of mineral nutrients (N, P, K) on saffron production. Acta Hort. 306, 426–430.

    Google Scholar 

  • Bisset N.G. (1994) Herbal drugs and phytopharmaceuticals. Medpharm Scientific Publications, Stuttgart.

    Google Scholar 

  • Bosser A., Belin J.M. (1994) Synthesis of β-ionone in an aldehyde/xanthine oxidase/β-carotene system involving free radical formation. Biotechnol. Progr. 10, 129–133.

    Article  CAS  Google Scholar 

  • Bouvier F., Suire C., Mutterer J., Camara B. (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15, 47–62.

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F., Grilli Caiola M. (1998) Flow cytometric analysis if nuclear DNA in Crocus sativus and allies (Iridacee). Plant. Syst. Evol. 211, 149–154.

    Article  Google Scholar 

  • Brighton C.A. (1977) Cytology of Crocus sativus L. and its allies (Iridaceae). Plant Syst. Evol. 128, 137–157.

    Google Scholar 

  • Burdock G.A., Carabin I.G., Griffiths J.C. (2006) The importance of GRAS to the functional food and nutraceutical industries. Toxicology 221, 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Ortega H., Pereda-Miranda R., Abdullaev F.I. (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 100, 1126–1131, and references therein.

    Google Scholar 

  • Carmona M., Alonzo G.L. (2004) A new look at saffron: mistakes beliefs. Proceedings of the First International Symposium on Saffron Biology and Biotechnology. Acta Hort. 650, 373–391.

    CAS  Google Scholar 

  • Carmona M., Zalacain A., Pardo J.E., Lòpez E., Alvarruiz A., Alonso G.L. (2005) Influence of different drying and aging conditions on saffron constituents. J. Agr. Food Chem. 53, 3974–3979.

    Article  CAS  Google Scholar 

  • Carmona M., Martínez J., Zalacain A., Rodríguez-Méndez M.L., De Saja J.A., Alonso G.L. (2006a) Analysis of saffron volatile fraction by TD-GC-MS and e-nose. Eur. Food Res. Technol. 223, 96–101.

    Article  CAS  Google Scholar 

  • Carmona M., Zalacain A., Salinas M.R., Alonso G.L. (2006b) Generation of saffron volatiles by thermal carotenoid degradation. J. Agr. Food Chem. 54, 6825–6834.

    Article  CAS  Google Scholar 

  • Carmona M., Zalacain A., Sanchez A.M., Novella J.L., Alonso G.L. (2006c) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J. Agr. Food Chem. 54, 973–979.

    CAS  Google Scholar 

  • Carmona M., Sánchez A.M., Ferreres F., Zalacain A., Tomás-Berberán F., Alonso G.L. (2007) Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: comparative study of samples from different geographical origin. Food Chem. 100, 445–450.

    Article  CAS  Google Scholar 

  • Castillo R., Fernandez J.A., Gomez-Gomez L. (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol. 139, 674–689.

    Article  PubMed  CAS  Google Scholar 

  • Chichiriccò G. (1984) Karyotype and meiotic behaviour of the triploid Crocus sativus L. Caryologia 37, 233–239.

    Google Scholar 

  • Chichiriccò G. (1996) Intra- and interspecific reproductive barriers in Crocus (Iridacee). Plant. Syst. Evol. 201, 83–92.

    Article  Google Scholar 

  • Chichiriccò G. (1999) Sterility and perspectives for genetic improvement of Crocus sativus L. In: Negbi M. (Ed.), Saffron. Harwood Academic Publishers, Amsterdam, pp. 127–135.

    Google Scholar 

  • Chichiriccò G., Grilli Caiola M. (1984) Crocus sativus pollen tube growth in intra- and interspecific pollination. Caryologia 37, 115–125.

    Google Scholar 

  • Chio-Sang T. (1996) Effect of planting depth and existence of tunic on growth and flowering in Freesia forcing. J. Korean Hortic. Sci. 37, 57–581.

    Google Scholar 

  • Dafni A., Shmida A., Avishai M. (1981) Leafless autumnal flowering geophytes in the Mediterranean region. Photographical, ecological and evolutionary aspects. Plant. Syst. Evol. 173, 181–193.

    Article  Google Scholar 

  • De Juan J.A., Moya A., Lopez S., Botella O., Lopez H., Muòoz R. (2003) Influencia del tamao del cormo y la densidad de plantación de la producción de cormos de Crocus sativus L. ITEA 99, 169–180.

    Google Scholar 

  • De Mastro G., Ruta C. (1993) Relation between corm size and saffron (Crocus sativus L.) flowering. Acta Hort. 344, 512–517.

    Google Scholar 

  • Debussche M., Garnier E., Thompson J.D. (2004) Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: a genus-wide study of Cyclamen. Bot. J. Linn. Soc. 145, 469–484.

    Article  Google Scholar 

  • Degli Espinosa G. (1904) Lo zafferano, Coltivazione e commercio, L’Aquila.

    Google Scholar 

  • Dhar A.K., Sapru R., Rekha K. (1988) Studies on saffron in Kashmir. 1. Variation in natural population and its cytological behaviour. Crop Improv. 15, 48–52.

    Google Scholar 

  • Di Crecchio R. (1960) Lo zafferano, L’Italia Agricola N. 6, Ramo Editoriale degli Agricoltori (Ed.), Roma, p. 23.

    Google Scholar 

  • Ehsanzadeh P., Yadollahi A.A., Maibodi A.M.M. (2004) Productivity, growth and qualità attributes of 10 Iranian saffron accession under climatic conditios of Chahar-Mahal Bakhtiari. Central Iran, Acta Hort. 650, 183–188.

    Google Scholar 

  • Estilai A. (1978) Variability in saffron (Crocus sativus L.). Experientia 34, 725.

    Google Scholar 

  • Fernández J.A. (2004) Biology, biotechnology and biomedicine of saffron. Recent Res. Dev. Plant Sci. 2, 127–159.

    Google Scholar 

  • Fernández J.A., Escribano Martínez J. (2000), Biotecnología del azafrán, Ed. Universidad de Castilla, La Mancha, Cienc. Téc. 31 Cuenca.

    Google Scholar 

  • Galigani P.F. (1982) Progetto piante officinali: relazione dell’attività svolta dall’Unità Operativa dell’Istituto di Meccanica Agraria Meccanizzazione della Facoltà di Agraria dell’Università di Firenze nel II anno di ricerca 1981–1982. unpublished.

    Google Scholar 

  • Galigani P.F. (1987) La meccanizzazione delle colture di salvia, lavanda, zafferano e genziana. Proceedings of the Conference on the “Coltivazione Piante officinali.” Trento 9–10 ottobre (1986), pp. 221–235.

    Google Scholar 

  • Galigani P.F., Garbati Pegna F. (1999) Mechanized saffron cultivation including harvesting. In: Negbi M. (Ed.), Saffron: Crocus sativus L. Harwood Academic Publishers, Australia, pp. 115–126.

    Google Scholar 

  • Gao W.-Y., Li Y.-M., Zhu D.-Y. (1999) New anthraquinones from the sprout of Crocus sativus. Acta Bot. Sin. 41, 531–533.

    CAS  Google Scholar 

  • Ghaffari S.M. (1986) Cytogenetic studies of cultivated Crocus sativus (Iridacee). Plant Syst. Evol. 153, 199–204.

    Article  Google Scholar 

  • Ghosal S., Singh S.K., Battacharya S.K. (1989) Mangicrocin, and adaptogenic xanthone-carotenoid glycosidic conjugate from saffron. J. Chem. Res. - S 3, 70–71.

    Google Scholar 

  • Girard N., Navarrete M. (2005) Quelles synergies entre connaissances scientifiques et empiriques? L’exemple des cultures du safran et de la truffe. Nat. Sci. Soc. 13, 33–44.

    Article  Google Scholar 

  • Goliaris A.H. (1999) Saffron cultivation in Greece. In: Negbi M. (Ed.), Saffron: Crocus sativus L. Harwood Academic Publishers, Australia, pp. 73–85.

    Google Scholar 

  • Gregory M., Menary R.C., Davies N.W. (2005) Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J. Agr. Food Chem. 53, 5969–5975.

    Article  CAS  Google Scholar 

  • Gresta F., Lombardo G.M., Ruberto G., Siracusa L. (2008) Effect of mother corm dimension and sowing time on stigmas yields, daughter corms and qualitative aspects of saffron (Crocus sativus L.) in Mediterranean environment. J. Sci. Food Agric. 88, 1144–1150.

    Article  CAS  Google Scholar 

  • Grilli Caiola M. (1999) Reproduction biology in saffron and its allies. In: Negbi M. (Ed.), Saffron. Harwood Academic Publishers, Amsterdam, pp. 31–52.

    Google Scholar 

  • Grilli Caiola M. (2004) Saffron reproductive biology. Acta Hort. 650, 25–37.

    Google Scholar 

  • Grilli Caiola M. (2005) Embryo origin and development in Crocus sativus L. (Iridacee). Plant Biosyst. 139, 335–343.

    Google Scholar 

  • Grilli Caiola M., Chichiriccò G. (1991) Structural organization of saffron (Crocus sativus L.) pistil. Israel J. Bot. 40, 199–207.

    Google Scholar 

  • Grilli Caiola M., Di Somma D., Lauretti P. (2001) Comparative study on pollen and pistil of Crocus sativus L. (Iridaceae) and its allied species. Ann. Bot. Roma 1, 93–103.

    Google Scholar 

  • Grilli Caiola M., Caputo P., Zanier R. (2004) RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biol. Plantarum 48, 375–380.

    Article  Google Scholar 

  • Halevy A.H. (1990) Recent advances in control of flowering and growth habit of geophytes. Acta Hort. 266, 35–42.

    Google Scholar 

  • Horne J., Carpino S., Tumminello L., Rapisarda T., Corallo L., Licitra G. (2005) Differences in volatiles, and chemical microbial and sensory characteristics between artisanal and industrial Piacentinu Ennese Cheeses. Int. Dairy J. 15, 605–617.

    Article  CAS  Google Scholar 

  • Hosseini M., Sadeghiand B., Aghamiri S.A. (2004) Influence of foliar fertilization on yield of saffron (Crocus sativus L.). Acta Hort. 650, 207–209.

    Google Scholar 

  • Hosseinzadeh H., Khosravan V. (2002) Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Arch. Intern. Med. 581, 44–47.

    Google Scholar 

  • Hosseinzadeh H., Younesi Hani M. (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2, 7 (www.biomedcentral.com/bmcpharmacol).

  • Hosseinzadeh H., Sadeghnia H.R., Ziaee T.D. (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J. Pharm. Sci. 8, 387–393.

    CAS  Google Scholar 

  • Ingram J.S. (1969) Saffron (Crocus sativus L.). Trop. Sci. 11, 177–184.

    Google Scholar 

  • International Trade Centre, UNCTAD/WTO (2006) World Markets in the Spice Trade 2000–2004. Geneva, ITC, 2006, vi, 111 p.

    Google Scholar 

  • ISO-3632-2-2003 (2003) Part 1: Specification, Part 2: Test Methods. International Organisation for Standardization, Geneva.

    Google Scholar 

  • Kalesi M., Behboodi B.Sh., Ebrahimzadeh H. (2004) Development and contraction of contractile roots in Crocus sativus. Acta Hort. 650, 55–58.

    Google Scholar 

  • Khan I.A. (2004) Induced mutagenic variability in saffron (Crocus sativus L.). Acta Hort. 650, 281–283.

    Google Scholar 

  • Konoshima T., Takasaki M. (2003) Anti-carcinogenic activities of natural pigments from beet root and saffron. Foods Food Ingredients J. Japan 208 615–622.

    CAS  Google Scholar 

  • Koocheki A.A. (2004) Indigenous knowledge in agriculture with particular reference to saffron production in Iran. Acta Hort. 650, 175–182.

    Google Scholar 

  • Li C.-Y., Wu T.-S. (2002) Constituents of the stigmas of Crocus sativus and their tyrosinase inhibitory activity. J. Nat. Prod. 65, 1452–1456.

    Article  PubMed  CAS  Google Scholar 

  • Li C.-Y., Wu T.S. (2004) Antityrosinase principles and constituents of the petals of Crocus sativus. J. Nat. Prod. 67, 437–440.

    Article  CAS  Google Scholar 

  • Lombardo G., Gresta F., La Malfa G., Scoto A. (2005) Primi risultati sulla coltivazione dello zafferano nella collina interna siciliana. Proceedings of the first congress on “Piante mediterranee.” Agrigento, 7–8 ottobre, Italy.

    Google Scholar 

  • Lozano P., Castellar M.R., Simancas M.J., Ibora J.L. (1999) A quantitative high-performance liquid chromatographic method to analyze commercial saffron (Crocus sativus L.) products. J. Chromatogr. A 830, 477–483.

    CAS  Google Scholar 

  • Magesh V., Singh J.P.V., Selvendiran K., Ekambaram G., Sakthisekaran D. (2006) Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol. Cell. Biochem. 287, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Maish J.M. (1885) On the adulteration of saffron. The Analyst 200–203.

    Google Scholar 

  • Manganaro G. (2001) Tra archeologia ed epigrafia: due note. Z. Papyrologie Epigraphik 137, 189–196.

    Google Scholar 

  • Mannino S., Amelotti G. (1977) Determinazione dell’umidità ottimale di conservazione dello zafferano. Riv. Soc. Ital. Sci. Aliment. 2, 95–98.

    Google Scholar 

  • Maroto A.L. (1950) Natural anthocyanin pigments. Rev. Real Acad. Sci. Exact Fis. Nat (Madrid) 44, 79, CA 46, 581.

    Google Scholar 

  • Mathew B. (1977) Crocus sativus L. and its allies (Iridaceae). Plant Syst. Evol. 128, 89–103.

    Google Scholar 

  • Mathew B. (1982) The Crocuses: a revision of the genus Crocus. B.T. Batsford, London.

    Google Scholar 

  • Mathew B. (1999) Botany, taxonomy and cytology of Crocus sativus L. and its allies. In: Negbi M. (Ed.), Saffron. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • McGimpsey J.A., Douglas M.H., Wallace A.R. (1997) Evaluation of saffron (Crocus sativus L.) production in New Zealand. N.Z. J. Crop Hort. Sci. 25, 159–168.

    Google Scholar 

  • Molina R.V., Garcìa-Luis A., Coll V., Ferrer C., Valero M. (2004a) Flower formation in the saffron Crocus (Crocus sativus L.), The role of temperature. Proceedings of the First International Symposium on Saffron Biology and Biotechnology. Acta Hort. 650, 39–47.

    Google Scholar 

  • Molina R.V., Valero M., Navarro Y., Garcìa-Luis A., Guardiola J.R. (2004b) The effect of time of corm lifting and duration of incubation at inductive temperature on flowering in the saffron plant (Crocus sativus L.). Sci. Hort. 103, 79–91.

    Article  Google Scholar 

  • Mollafilabi A. (2004) Experimental findings of production and echo physiological aspects of saffron (Crocus sativus L.). Acta Hort. 650, 195–200.

    Google Scholar 

  • Mosaferi H. (2001) Effect of different regimens of irrigation on saffron yield. M.S. thesis of irrigation and drainage, Ferdowsi University of Mashhad, Iran.

    Google Scholar 

  • Narasimhan S., Chand N., Rajalakshmi D. (1992) Saffron: quality evaluation by sensory profile and gas chromatography. J. Food Qual. 15, 303–314.

    Article  CAS  Google Scholar 

  • Negbi M. (1990) Physiological research on the Saffron Crocus (Crocus sativus). In: Tammaro F., Marra L. (Eds.), Lo zafferano. Proceedings of the international conference on saffron (Crocus sativus L.), L’Aquila (Italy), 27–29 October 1989.

    Google Scholar 

  • Negbi M., Dagan B., Dror A., Basker D. (1989) Growth, flowering, vegetative reproduction and dormancy in the saffron crocus (Crocus sativus L.). Israel J. Bot. 38, 95–113.

    Google Scholar 

  • Negbi M. (1999) Saffron cultivation: past, present and future prospects. In: Negbi M. (Ed.), Saffron: Crocus sativus L. Harwood Academic Publishers, Australia, pp. 1–18.

    Google Scholar 

  • Ochiai T., Ohno S., Soeda S., Tanaka H., Shoyama Y., Shimeno H. (2004) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci. Lett. 62, 61–64.

    Article  CAS  Google Scholar 

  • Papandreou M.A., Kanakis C.D., Polissiou M.G., Efthimiopoulos S., Cordopatis P., Margarity M., Lamari F.N. (2006) Inhibitory activity on amyloid-β-aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J. Agr. Food Chem. 54, 8162–8168.

    Article  CAS  Google Scholar 

  • Pfander H., Schurteberger H. (1982) Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21, 1039–1042.

    Article  CAS  Google Scholar 

  • Piccioli G. (1932) La coltura dello zafferano ne L’Aquila degli Abruzzi. Cellamare, L’Aquila (Italy).

    Google Scholar 

  • Pignatti S. (1982) Flora d’Italia. I–III, Edagricole.

    Google Scholar 

  • Plessner O., Negbi M., Ziv M., Basker D. (1989) Effect of temperature on the flowering of the saffron crocus (Crocus sativus L.): induction of hysteranthy. Israel J. Bot. 38, 1–7.

    Google Scholar 

  • Raina B.L., Agarwal S.G., Bhatia A.K., Gaur G.S. (1996) Changes in pigments and volatiles of saffron (Crocus sativus L.) during processing and storage. J. Sci. Food Agr. 71, 27–32.

    Article  CAS  Google Scholar 

  • Roedel W., Petrzika M. (1991) Analysis of the volatile components of saffron. J. High Res. Chromatogr. 14, 771–774.

    Article  CAS  Google Scholar 

  • Rychener M., Bigler P., Pfander H. (1984) Isolierung und strukturaufklärung von neapolitanose (O − β-d-glucopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 6)]-(d-glucose), einen neuen trisaccharid aus den stempein von gartenkrokussen (Crocus neapolitanus var.). Helv. Chim. Acta 67, 386–391.

    CAS  Google Scholar 

  • Rubio Moraga A., Fernández Nohales P., Fernández Pérez J., Gómez-Gómez L. (2004) Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219, 955–966.

    Article  CAS  Google Scholar 

  • Sadeghi B. (1980) Effect of chemical fertilizer on saffron production. Annual Report, Korasan Agriculture Research centre.

    Google Scholar 

  • Saito N., Mitsui S., Hayashi K. (1960) Anthocyanins. XXXIII. Delphin, the anthocyanin of medical saffron and its identity with hyacin by paper chromatography of partial hydrolyzates. Proc. Jpn Acad. 36, 340–345.

    CAS  Google Scholar 

  • Sampathu S.R., Shivashankar S., Lewis Y.S. (1984) Saffron (Crocus sativus L.): cultivation, processing, chemistry and standardization. Crit. Rev. Food Sci. Nutr. 20, 123–157.

    CAS  Google Scholar 

  • Skrubis B. (1990) The cultivation in Greece of Crocus sativus L. In: Tammaro F., Marra L. (Eds.), Proceedings of the international conference on saffron (Crocus sativus L.). L’Aquila, pp. 171–182.

    Google Scholar 

  • Soeda S., Ochiai T., Tanaka H., Shoyama Y., Shimeno H. (2005) Prevention of ischemic neuron death by a saffron’s carotenoid pigment crocin and its mechanism of action. Focus Neurochem. Res. 139–156.

    Google Scholar 

  • Straubinger M., Jezussek M., Waibel R., Winterhalter P. (1997) Novel glycosidic constituents from saffron. J. Agr. Food Chem. 45, 1678–1681.

    Article  CAS  Google Scholar 

  • Straubinger M., Bau B., Eckstein S., Fink M., Winterhalter P. (1998) Identification of novel glycosidic aroma precursors in saffron (Crocus sativus L.). J. Agr. Food Chem. 46, 328–3243.

    Google Scholar 

  • Tammaro F. (1990) Crocus sativus L. – cv. Piano di Navelli (L’Aquila saffron): environment, cultivation, morphometric characteristics, active principles, uses. In: Tammaro F., Marra L. (Eds.), Proceedings of the international conference on saffron (Crocus sativus L.). L’Aquila, pp. 47–57.

    Google Scholar 

  • Tammaro F. (1999) Saffron (Crocus sativus L.) in Italy. In: Negbi M. (Ed.), Saffron: Crocus sativus L. Harwood Academic Publishers, Australia, pp. 53–62.

    Google Scholar 

  • Tammaro F., Di Francesco L. (1978) Lo zafferano dell’Aquila. Ist. Tecn. Prop. Agraria, Ministero Agricoltura e Foreste, Roma.

    Google Scholar 

  • Tarantilis P.A., Polissiou M.G. (1997) Isolation and Identification of the Aroma Components from Saffron (Crocus sativus). J. Agr. Food Chem. 45, 459–462.

    Article  CAS  Google Scholar 

  • Tarantilis P.A., Polissiou M.G. (2004) Chemical analysis and antitumor activity of natural and semi-natural carotenoids of saffron. Acta Hort., 650, 447–461 (Proceedings of the 1st International Symposium on Saffron Biology and Biotechnology 2003).

    Google Scholar 

  • Thiercelin J.-M. (2004) Room table: industrial perspectives for saffron. Acta Hort. 650, 399–404.

    Google Scholar 

  • Trigoso C.I., Stockert J.C. (1995) Fluorescence of the natural dye saffron: selective reaction with eosinophil leucocyte granules. Histochem. Cell Biol. 104, 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Vavilov N.I. (1951) The origin, variation, immunity and breeding of cultivated plants. The Cronica Botanica, Co., Waltham, Mass.

    Google Scholar 

  • Vickackaite V., Romani A., Pannacci D., Favaro G. (2004) Photochemical and thermal degradation of a naturally occurring dye used in artistic painting. A chromatographic, spectrophotometric and fluorimetric study on saffron. Int. J. Photoener. 6, 175–183.

    Article  CAS  Google Scholar 

  • Winterhalter P., Straubinger M. (2000) Saffron: renewed interest in an ancient spice. Food Rev. Int. 16, 39–59.

    Article  CAS  Google Scholar 

  • Wu Z., Robinson D.S., Hughes R.K., Casey R., Hardy D., West S.I. (1999) Co-oxidation of β-carotene catalyzed by soybean and recombinant pea lipoxygenases. J. Agr. Food Chem. 47, 4899–4906.

    Article  CAS  Google Scholar 

  • Zaffar G., Wani S.A., Anjum T., Zeerak N.A. (2004) Colchine induced variability in saffron. Acta Hort. 650, 277–280.

    CAS  Google Scholar 

  • Zalacain A., Ordoudi S.A., Blazquez I., Diaz-Plaza E.M., Carmona M., Tsimidou M.Z., Alonso G.L. (2005a) Screening method for the detection of artificial colours in saffron using derivative UV-Vis spectrometry after precipitation of crocetin. Food Addit. Contam. 22, 607–615.

    Article  PubMed  CAS  Google Scholar 

  • Zalacain A., Ordoudi S.A., Diaz-Plaza E.M., Carmona M., Blazquez I., Tsimidou M.Z., Alonso G.L. (2005b) Near-infrared spectroscopy in saffron quality control: determination of chemical composition and geographical origin. J. Agr. Food Chem. 53, 9337–9341.

    Article  CAS  Google Scholar 

  • Zanzucchi C. (1987) Research carried out by the Consorzio Comunale Parmense on Saffron (Crocus sativus L.). Proceedings of the conference on the “coltivazione delle piante officinali.” Trento 9–10 ottobre 1986, pp. 347–395.

    Google Scholar 

  • Zougagh M., Rios A., Valcarcel M. (2005a) An automated screening method for the fast, simple discrimination between natural and artificial colorants in commercial saffron products. Anal. Chim. Acta 535, 133–138.

    Article  CAS  Google Scholar 

  • Zougagh M., Simonet B.M., Rios A., Valcarcel M. (2005b) Use of non-aqueous capillary electrophoresis for the quality control of commercial saffron samples. J. Chromatogr. A 1085, 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Zubor A.A., Suranyi G., Gyori Z., Borbely G., Prokisch J. (2004) Molecular biological approach of the Systematics of Crocus sativus L. and its allies. In: Abdullaev F. (Ed.), Proceedings of the First International Symposium on Saffron Biology and Biotechnology. pp. 85–93.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Maria Grilli Caiola and to Prof. Antonia Cristaudo for their useful suggestions on genetic and botanical features.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gresta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Gresta, F., Lombardo, G.M., Siracusa, L., Ruberto, G. (2009). Saffron, An Alternative Crop for Sustainable Agricultural Systems: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_23

Download citation

Publish with us

Policies and ethics