Skip to main content

Identification of Traits Implicated in the Rhizosphere Competence of Fluorescent Pseudomonads: Description of a Strategy Based on Population and Model Strain Studies

  • Chapter
  • First Online:

Abstract

The lack of consistency of the beneficial effects of inoculated fluorescent pseudomonads has often been related to their bad survival in the rhizosphere. In this review, we describe the strategy followed over the last decade to study traits involved in the rhizosphere competence of these bacteria. The diversity of indigenous populations associated with plant roots was first compared to that of populations associated with uncultivated soils in order to identify traits that discriminate these populations. The involvement of these bacterial traits in the rhizosphere competence was then assessed by comparing the competitiveness of a wild-type strain to that of mutants affected in the corresponding phenotypes. Finally, traits shared by populations adapted to the rhizosphere were identified by comparing both the competitiveness in the rhizosphere and the metabolism of a collection of bacterial strains. The data yielded indicated that rhizosphere competent pseudomonads show a specific metabolism especially characterized by the efficiency of the pyoverdine-mediated iron uptake and by the ability to reduce nitrogen oxides.

Résumé – Identification de caractères impliqués dans la compétence rhizosphérique des Pseudomonas spp. fluorescents: description d’une stratégie basée sur des études de populations et de souche modèle.

Le manque de fiabilité des effets bénéfiques déterminés par les Pseudomonas spp. fluorescents inoculés a souvent été attribué à leur mauvaise survie dans la rhizosphère. Au cours de cette synthèse, nous décrivons la stratégie suivie lors des dix dernières années pour étudier les caractères impliqués dans la compétence rhizosphérique de ces bactéries. La diversité des populations indigènes associées aux racines a d’abord été comparée à celle des populations associées à des sols nus. L’implication de ces caractères bactériens dans la compétence rhizosphérique a ensuite été évaluée en comparant la compétitivité d’une souche modèle à celle de mutants affectés dans les phénotypes correspondants. Finalement, des caractères partagés par les populations adaptées à la rhizosphère ont été identifiés en comparant la compétitivité rhizosphérique et le métabolisme d’une collection de souches. Les données recueillies indiquent que les Pseudomonas spp. fluorescents adaptés à la rhizosphère présentent un métabolisme spécifique caractérisé, en particulier, par l’efficacité de leur système d’acquisition du fer basé sur les pyoverdines et par leur aptitude à réduire les oxydes d’azote.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alabouvette C., Lemanceau P., Natural suppressiveness of soils in management of fusarium wilts, in: Utkhede R., Gupta V.K. (Eds.), Management of soil-borne diseases. Kalyani Publisher, Ludhiana, India, 1996, pp. 301–322.

    Google Scholar 

  • Anderson A.J., Habibzadegah-Tari P., Tepper C.S., Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida, Appl. Environ. Microbiol. 54 (1988) 375–380.

    PubMed  CAS  Google Scholar 

  • Baker R., Elad Y., Sneh B., Physical, biological and host factors in iron competition in soils, in: Swinburne T.R. (Ed.), Iron, siderophores and plant diseases. Plenum, New York/London, 1986, pp. 77–84.

    Google Scholar 

  • Bezzate S., Aymerich S., Chambert R., Czarnes S., Berge O., Heulin T., Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere, Environ. Microbiol. 2 (2000) 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Bossis E., Lemanceau P., Latour X., Gardan L., The taxonomy of Pseudomonas fluorescens and P. putida: current status and need for revision, Agronomie 20 (2000) 51–63.

    Google Scholar 

  • Bowen G.D., Rovira A.D., Microbial colonization of plant roots, Annu. Rev. Phytopathol. 14 (1976) 121–144.

    Article  Google Scholar 

  • Budzikiezwicz H., Secondary metabolites from fluorescent pseudomonads, FEMS Microbiol. Rev. 104 (1993) 209–228.

    Article  Google Scholar 

  • Bull C.T., Weller D.M., Thomashow L.S., Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79, Phytopathology 81 (1991) 954–959.

    Google Scholar 

  • Carroll H., Moënne-Loccoz Y., Dowling D.N., O’Gara F., Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets, Appl. Environ. Microbiol. 61 (1995) 3002–3007.

    PubMed  CAS  Google Scholar 

  • Clays-Josserand A., Lemanceau P., Philippot L., Lensi R., Influence of two plant species (flax and tomato) on the distribution of nitrogen dissimilative abilities within fluorescent Pseudomonas spp., Appl. Environ. Microbiol. 61 (1995) 1745–1749.

    Google Scholar 

  • Clays-Josserand A., Ghiglione J.F., Philippot L., Lemanceau P., Lensi R., Effect of soil type and plant species on the fluorescent pseudomonads nitrate dissimilating community, Plant Soil 209 (1999) 275–282.

    Article  Google Scholar 

  • Cook R.J., Rovira A.D., The role of bacteria in biological control of Gaeumannomyces graminis by suppressive soils, Soil. Biol. Biochem. 8 (1976) 269–273.

    Article  Google Scholar 

  • Cook R.J., Thomashow L.S., Weller D.M., Fujimoto D., Mazzola M., Bangera G., Kim D.S., Molecular mechanisms of defense by rhizobacteria against root disease, Proc. Natl. Acad. Sci. USA 92 (1995) 4197–4201.

    Article  PubMed  CAS  Google Scholar 

  • Curl E.A., Truelove B., The rhizosphere, in: Advances series in agricultural sciences No 15. Springer, Berlin/Heildeberg/ New York/Tokyo, 1986.

    Google Scholar 

  • Delorme S., Caractères bactériens associés à la compétitivité des Pseudomonas spp. fluorescents dans la rhizosphère, Thèse de Doctorat, Université de Bourgogne, Dijon, 2001.

    Google Scholar 

  • Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.M., Gardan L., Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils, Int. J. Syst. Bacteriol. 52 (2002) 513–523.

    Google Scholar 

  • Delorme S., Philippot L., Edel-Hermann V., Deulvot C., Mougel C., Lemanceau P., Compared genetic diversity of the narG, nosZ and 16S rRNA genes in fluorescent pseudomonads, Appl. Environ. Microbiol. 69 (2003) 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  • De Mot R., Vanderleyden J., Purification of a root-adhesive outer membrane protein of root-colonizing Pseudomonas fluorescens, FEMS Microbiol. Lett. 81 (1991) 323–328.

    Article  Google Scholar 

  • Dénarié J., Debelle F., Prome J.C., Rhizobium lipo-chitooligosaccharide nodulation factors : signaling molecules mediating recognition and morphogenesis, Ann. Rev. Biochem. 65 (1996) 503–535.

    Article  PubMed  Google Scholar 

  • De Weger L.A., Van Der Vlught C.I.M., Wijfjes A.H.M., Bakker P.A.H.M., Lugtenberg B.J.J., Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots, J. Bacteriol. 169 (1987) 2769–2773.

    PubMed  Google Scholar 

  • De Weger L.A., Bakker P.A.H.M., Schippers, B., Van Loosdrecht M.C.M., Lugtenberg B.J.J., Pseudomonas spp. with mutational changes in the O-antigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots, in: Lugtenberg B.J.J. (Ed.), Signal molecules in plants and plant-microbe interactions. Springer, Berlin, 1989, pp. 197–202.

    Google Scholar 

  • De Weger L.A., Van Der Bij A.J., Dekkers L.C., Simons M., Wijffelman C.A., Lugtenberg B.J.J., Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads, FEMS Microbiol. Ecol. 17 (1995) 221–228.

    Article  Google Scholar 

  • Dowling D.N., O’Gara F., Metabolites of Pseudomonas involved in the biocontrol of plant disease, Trends Biotechnol. 12 (1994) 133–140.

    Article  CAS  Google Scholar 

  • Duijff B.J., Gianinazzi-Pearson V., Lemanceau P, Involvement of the outermembrane lipopolysaccharides in the endophytic root colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r, New Phytol. 135 (1997) 325–334.

    Article  CAS  Google Scholar 

  • Duijff B.J., Recorbet G., Bakker P.A.H.M., Loper J.E., Lemanceau P., Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358, Phytopathology 89 (1999) 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  • Elasri M., Delorme S., Lemanceau P., Stewart G., Laue B., Glickmann E., Oger P.M., Dessaux Y., Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp., Appl. Environ. Microbiol. 67 (2001) 1198–1209.

    Google Scholar 

  • Ellis J.E., Timms-Wilson T.M., Bailey, M.J., Identification of conserved traits in fluorescent pseudomonads with antifungal activity, Environ. Microbiol. 2 (2000) 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Eparvier A., Lemanceau P., Alabouvette C., Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture, FEMS Microbiol. Ecol. 86 (1991) 177–184.

    Article  Google Scholar 

  • Frey P., Frey-Klett P., Garbaye J., Berge O., Heulin, T., Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas Fir-Laccaria bicolor mycorrhizosphere, Appl. Environ. Microbiol. 63 (1997) 1852–1860.

    PubMed  CAS  Google Scholar 

  • Gamalero E., Martinotti M.G., Trotta A., Lemanceau P., Berta G., Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mossea BEG12 in the root system of tomato differ according to plant growth conditions, New Phytologist. 155 (2002) 293–300.

    Article  Google Scholar 

  • Geels P., Schippers B., Reduction of yield depression in high frequency potato cropping soil after seed tuber treatment with antagonistic fluorescent Pseudomonas spp., Phytopathol. Z., 108 (1983) 207–214.

    Google Scholar 

  • Glandorf D.C.M., Peters L.G., Van der Sluis I., Bakker P.A.H.M., Schippers, B., Crop specificity of rhizosphere pseudomonads and the involvement of root agglutinins, Soil Biol. Biochem., 25 (1993) 981–989.

    Article  CAS  Google Scholar 

  • Glick B.R., The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41 (1995) 109–117.

    Article  CAS  Google Scholar 

  • Gutterson N., Microbial fungicides: recent approaches to elucidating mechanisms, Crit. Rev. Biotechnol. 10 (1990) 69–91.

    Article  Google Scholar 

  • Haas D., Keel C., Laville L., Maurhofer M., Oberhänsli T., Schnider U., Voisard C., Wuthrich B., Défago G., Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in suppression of root diseases, in: Hennecke H., Verma D.P.S. (Eds.), Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, the Netherlands, 1991, pp. 450–456.

    Google Scholar 

  • Höfte M., Boelens J., Verstraete W., Survival and root colonization of mutants of plant growth-promoting pseudomonads affected in siderophore biosynthesis or regulation of siderophore production, J. Plant Nutr. 15 (1992) 2253–2262.

    Article  Google Scholar 

  • Höjberg O., Sörensen J., Microgradients of microbial oxygen consumption in a barley rhizosphere model system, Appl. Environ. Microbiol. 59 (1993) 431–437.

    PubMed  Google Scholar 

  • Höjberg O., Schnider U., Winteler H.V., Sörensen J., Haas, D., Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil, Appl. Environ. Microbiol. 65 (1999) 4085–4093.

    PubMed  Google Scholar 

  • Howie W.J., Cook R.J., Weller D.M., Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all, Phytopathology 77 (1987) 286–292.

    Article  Google Scholar 

  • Keel C., Weller D.M., Natsch A., Défago G., Cook R.J., Thomashow L.S., Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations, Appl. Environ. Microbiol. 62 (1996) 552–563.

    PubMed  CAS  Google Scholar 

  • Kluepfel D.A., The behavior and tracking of bacteria in the rhizosphere, Annu. Rev. Phytopathol. 31 (1993) 441–472.

    Article  Google Scholar 

  • Laguerre G., Rigottier-Gois L., Lemanceau P., Fluorescent Pseudomonas species categorized by using polymerase chain reaction (PCR)/restriction fragment analysis of 16S rDNA, Mol. Ecol. 3 (1994) 479–487.

    Article  PubMed  CAS  Google Scholar 

  • Lam S.T., Ellis D.M., Ligon J.M., Genetic approaches for studying rhizosphere colonization, Plant Soil 129 (1990) 11–18.

    Article  Google Scholar 

  • Latour X., Effet de la plante et du sol sur la diversité des populations telluriques de Pseudomonas spp. fluorescents, Thèse de Doctorat, Université de Bourgogne, Dijon, 1996.

    Google Scholar 

  • Latour X., Lemanceau P., Carbon and energy metabolism of oxidase-positive saprophytic fluorescent Pseudomonas spp., Agronomie 17 (1997) 427–443.

    Google Scholar 

  • Latour X., Philippot L., Corberand T., Lemanceau P., The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type, FEMS Microbiol. Ecol. 30 (1999) 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Latour X., Corberand T., Laguerre G., Allard F., Lemanceau P., The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type, Appl. Environ. Microbiol. 62 (1996) 2449–2456.

    PubMed  CAS  Google Scholar 

  • Leisinger T., Margraff R., Secondary metabolites of the fluorescent pseudomonads, Microbiol. Rev. 43 (1979) 422–442.

    PubMed  CAS  Google Scholar 

  • Lelliot R.A., Billing E., Hayward A.C., A determinative scheme for fluorescent plant pathogenic pseudomonads, J. Appl. Bacteriol. 29 (1966) 470–489.

    Article  Google Scholar 

  • Lemanceau P., Samson R., 1983. Relations entre quelques caractéristiques in vitro de 10 Pseudomonas fluorescents et leur effet sur la croissance du haricot (Phaseolus vulgaris)., in: Dubos B.P., Olivier J.M. (Eds.), Les antagonismes microbiens. INRA, Paris, 1983, pp. 327–328.

    Google Scholar 

  • Lemanceau P., Alabouvette C., Biological control of fusarium deseases by fluorescent Pseudomonas and non-pathogenic Fusarium, Crop Prot. 10 (1991) 279–286.

    Article  Google Scholar 

  • Lemanceau P., Alabouvette C., Suppression of fusarium wilts by fluorescent pseudomonads: mechanisms and applications, Biocontrol Sci. Technol. 3 (1993) 219–234.

    Article  Google Scholar 

  • Lemanceau P., Alabouvette C., Couteaudier Y., Recherches sur la résistance des sols aux maladies. XIV. Modification du niveau de réceptivité d’un sol résistant et d’un sol sensible aux fusarioses vasculaires en réponse à des apports de fer et de glucose, Agronomie 8 (1988) 155–162.

    Google Scholar 

  • Lemanceau P., Samson R., Alabouvette C., Recherches sur la résistance des sols aux maladies. XV. Comparaison des populations de Pseudomonas fluorescents dans un sol résistant et un sol sensible aux fusarioses vasculaires, Agronomie 8 (1988) 243–249.

    Google Scholar 

  • Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J.M., Alabouvette C., Effect of two plant species, flax (Linum lusitatissinum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soilborne populations of fluorescents pseudomonads, Appl. Environ. Microbiol. 61 (1995) 1004–1012.

    Google Scholar 

  • Lifshitz R., Kloepper J.W., Kozlowsli M., Simonson C., Carlston J., Tipping E.M., Zaleska I., Growth promotion of canola (rapeseed) seedling by a strain of Pseudomonas putida under gnotobiotic conditions, Can. J. Microbiol. 33 (1987) 390–395.

    Article  Google Scholar 

  • Lindsay W.L., Chemical equilibria in soil, Wiley, New York, 1979.

    Google Scholar 

  • Lockwood J.L., Soil fungistasis, Ann. Rev. Phytopathol. 2 (1964) 341–362.

    Article  Google Scholar 

  • Loper J.E., Buyer J.S., Siderophores in microbial interactions on plant surfaces, Mol. Plant Microbe Interact. 4 (1991) 5–13.

    Article  CAS  Google Scholar 

  • Loper J.E., Henkels M.D., Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil with an ice nucleation reporter gene, Appl. Environ. Microbiol. 63 (1997) 99–105.

    PubMed  CAS  Google Scholar 

  • Lucas P., Sarniguet A., Collet J.M., Lucas M., Réceptivité des sols au piétin-échaudage (Gaeumannomyces graminis var. Tritici): influence de certaines techniques culturales. Soil Biol. Biochem. 21 (1989) 1073–1078.

    Google Scholar 

  • Lugtenberg B.J.J., Dekkers L.C., What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1 (1999) 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B.J.J., Kravchenko L.V., Simons M., Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization, Environ. Microbiol. 1 (1999) 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B.J.J., Dekkers L.C., Bloemberg G.V., Molecular determinants of rhizosphere colonization by Pseudomonas, Annu. Rev. Phytopathol. 39 (2001) 461–490.

    Article  PubMed  CAS  Google Scholar 

  • Lynch J.M., Whipps J.M., Substrate flow in the rhizosphere, Plant Soil 129 (1990) 1–10.

    Article  CAS  Google Scholar 

  • Mac Spadden Gardener B.B., Schroeder K.L., Kalloger S.E., Raaijmakers J.M., Thomashow L.S., Weller D.M., Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat, Appl. Environ. Microbiol. 66 (2000) 1939–1946.

    Google Scholar 

  • Mavingui P., Laguerre G., Berge O., Heulin T., Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl. Environ. Microbiol. 58 (1992) 1894–1903.

    PubMed  CAS  Google Scholar 

  • Mavrodi O.V., Mac Spadden Gardener B.B., Mavrodi D.V., Bonsall R.F., Weller D.M., Thomashow L.S., Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp., Phytopathology 91 (2001) 35–43.

    Google Scholar 

  • Mazzola M., Cook R.J., Thomashow L.S., Weller D.M., Pierson III L.S., Contribution of phenazine antibiotic biosynthesis to ecological competence of fluorescent pseudomonads in soil habitats, Appl. Environ. Microbiol. 58 (1992) 2616–2624.

    PubMed  CAS  Google Scholar 

  • Meikle A., Amin-Hanjani S., Glover L.A., Killham K., Prosser J.I., Matric potential and the survival and activity of a Pseudomonas fluorescens inoculum in soil, Soil Biol. Biochem. 27 (1995) 881–892.

    Article  CAS  Google Scholar 

  • Meyer J.M., Abdallah M.A., The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physico-chemical properties, J. Gen. Microbiol. 107 (1978) 319–328.

    CAS  Google Scholar 

  • Meyer J.M., Hallé F., Hohnadel D., Lemanceau P., Ratefiarivelo H., Siderophores of Pseudomonas – biological properties, in: Winkelmann G., Van der Helm D., Neilands J.B. (Eds.), Iron transport in microbes, plants and animals. VCH, Weinheim, NY, 1987, pp. 188–205.

    Google Scholar 

  • Meyer J.M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz, H., Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems, Microbiology UK 143 (1997) 35–43.

    Article  CAS  Google Scholar 

  • Meyer J.M., Geoffroy V.A., Baida N., Gardan L., Izard D., Lemanceau P., Achouak W., Palleroni N.J., Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads, Appl. Environ. Microbiol. 68 (2002) 2745–2753.

    Article  PubMed  CAS  Google Scholar 

  • Mirleau P., Rôle de la pyoverdine et de la nitrate réductase dans la compétence rhizosphérique et tellurique de la souche Pseudomonas fluorescens C7R12, Thèse de Doctorat, Université de Bourgogne, Dijon, 2000.

    Google Scholar 

  • Mirleau P., Philippot L., Corberand T., Lemanceau P., Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil, Appl. Environ. Microbiol. 67 (2001) 2627–2635.

    Article  PubMed  CAS  Google Scholar 

  • Mirleau P., Delorme S., Philippot L., Meyer J.M., Mazurier S., Lemanceau P., Fitness in soil and rhizosphere of Pseudomonas fluorescens strain C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake, FEMS Microbiol. Ecol. 34 (2000) 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Moulin F., Lemanceau P., Alabouvette C., Suppression of Pythium root rot of cucumber by a fluorescent pseudomonad is related to reduced root colonization by Pythium aphanidermatum. J. Phytopathol. 144 (1996) 125–129.

    Google Scholar 

  • O’Sullivan M., Stephens P.M., O’Gara F., Extracellular protease production by fluorescent Pseudomonas spp. and the colonization of sugarbeet roots and soil. Soil Biol. Biochem. 23 (1991) 623–627.

    Google Scholar 

  • Palleroni N.J., Gram-negative aerobic rods and cocci: Family I Pseudomonadaceae, in: Krieg NR., Holt J.G. (Eds.), Bergey’s manual of bacteriology. William & Wilkins, Baltimore, MD, 1984, pp. 141–168.

    Google Scholar 

  • Raaijmakers J.M., Weller D.M., Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils, Mol. Plant Microbe Interact. 11 (1998) 144–152.

    Google Scholar 

  • Raaijmakers J.M., Weller D.M., Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1–96, Appl. Environ. Microbiol. 67 (2001) 2545–2554.

    Google Scholar 

  • Raaijmakers J.M., Weller D.M., Thomashow L.S., Frequency of antibiotic producing Pseudomonas spp. in natural environments, Appl. Environ. Microbiol. 63 (1997) 881–887.

    Google Scholar 

  • Raaijmakers J.M., Leeman M., Van Oorschot M.M.P., Van der Sluis L., Schippers B., Bakker P.A.H.M., Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp., Phytopathology 85 (1995) 1075–1081.

    Google Scholar 

  • Rainey P., Adaptation of Pseudomonas fluorescens to the plant rhizosphere, Environ. Microbiol. 1 (1999) 243–257.

    Article  PubMed  CAS  Google Scholar 

  • Scher F.M., Kloepper J.W., Singleton C., Zaleski I., Laliberte M., Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacteria motility, chemotaxis and generation time. Phytopathology 78 (1988) 1055–1059.

    Article  Google Scholar 

  • Schippers B., Bakker A.W., Bakker P.A.H.M., Interactions of deleterious and beneficial rhizosphere microorganisms and the effect on cropping practices. Annu. Rev. Phytopathol. 25 (1987) 339–358.

    Article  Google Scholar 

  • Schippers B., Scheffer R.J., Lugtenberg B.J.J., Weisbeek P.J., Biocoating of seeds with plant growth-promoting rhizobacteria to improve plant establishment, Outlook Agric. 24 (1995) 179–185.

    Google Scholar 

  • Schroth M.N., Hildebrand D.C., Panopoulos N., Phytopathogenic pseudomonads and related plant-associated pseudomonads, in: Ballows A., Trüper H.G., Dworkin M., Harder W., KH Schleifer K.H. (Eds.), The Prokaryotes. Springer, New York, 1992, pp. 3104–3131.

    Google Scholar 

  • Simons M., Permentier H.P., De Weger L.A., Wijffelman C.A., Lugtenberg B.J.J., Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365, Mol. Plant Microbe Interact. 10 (1997) 102–106.

    Article  CAS  Google Scholar 

  • Thomashow L.S., Weller D.M., Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici., J. Bacteriol. 170 (1988) 3499–3508.

    Google Scholar 

  • Vancura V., Fluorescent pseudomonads in the rhizosphere of plants and their relation to root exudates, Folia microbiol. 25 (1980) 108–173.

    Article  Google Scholar 

  • Vancura V., Plant metabolites in soil, in: Vancura V., Kunc C. (Eds.), Soil microbial association. Elsevier, Amsterdam, 1988, pp. 57–132.

    Google Scholar 

  • Van Loon L.C., Bakker P.A.H.M., Pieterse C.M.J., Systemic resistance induced by rhizosphere bacteria, Ann. Rev. Plant Physiol. 26 (1998) 453–483.

    Google Scholar 

  • Verhille S., Baida N., Dabboussi F., Izard D., Leclerc H., Taxonomy study of bacteria from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov., Syst. Appl. Microbiol. 22 (1999) 45–58.

    Google Scholar 

  • Vesper S.J., Production of pili (fimbriae) by Pseudomonas fluorescens and a correlation with attachment to corn roots, Appl. Environ. Microbiol. 53 (1987) 1397–1405.

    PubMed  CAS  Google Scholar 

  • Weller D.M., Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytopathol. 26 (1988) 379–407.

    Article  Google Scholar 

  • Whipps J.M., Carbon loss from the roots of tomato and pea seedlings grown in soil, Plant Soil 103 (1987) 95–100.

    Article  CAS  Google Scholar 

  • Wood D.W., Gong F., Daykin M.M., Williams P., Pierson III L.S., N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere, J. Bacteriol. 179 (1997) 7663–7670.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. Klein for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lemanceau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Latour, X., Delorme, S., Mirleau, P., Lemanceau, P. (2009). Identification of Traits Implicated in the Rhizosphere Competence of Fluorescent Pseudomonads: Description of a Strategy Based on Population and Model Strain Studies. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_19

Download citation

Publish with us

Policies and ethics