Skip to main content

Environmental Costs and Benefits of Transportation Biofuel Production from Food-and Lignocellulose-Based Energy Crops: A Review

  • Chapter
  • First Online:

Abstract

Transportation biofuel production in the United States is currently dominated by ethanol from the grain of maize and, to a much lesser extent, biodiesel from soybeans. Although using these biofuels avoids many of the environmentally detrimental aspects of petroleum-based fossil fuels, biofuel production has its own environmental costs, largely related to fossil fuel use in converting crops to biofuels and crop cultivation itself, including ecological damages caused by nitrogen and phosphorus fertilizers, pesticides, and erosion. A new generation of biofuels derived from lignocellulosic sources offers greatly reduced environmental impacts while potentially avoiding conflicts between food and energy production. In particular, diverse mixtures of native prairie species offer biomass feedstocks that may yield greater net energy gains than monoculture energy crops when converted into biofuels, while also providing wildlife habitat and enriching degraded soils through carbon sequestration and nitrogen fixation. Ultimately, as demand for both food and energy rise in the coming decades, greater consideration will need to be given to how land can best be used for the greater benefit of society.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, et al (2002) Lignocellulosic biomass to ethanol process design and economics using co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, NREL/TP-510-32438, National Renewable Energy Laboratory, Golden, Colorado, USA

    Google Scholar 

  • Alper H, Moxley J, Nevoight E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production, Science 314, 1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Andow DA (2003) UK farm-scale evaluations of transgenic herbicide-tolerant crops, Nat Biotechnol 21, 1453–1454

    Article  PubMed  CAS  Google Scholar 

  • Archer CL, Jacobson MZ (2005) Evaluation of global wind power, J Geophys Res 110, D12110, doi:10.1029/ 2004JD005462

    Article  Google Scholar 

  • Atchison JE, Hettenhaus JR (2004) Innovative methods for corn stover collecting, handling, storing and transporting, NREL/SR-510-33893, National Renewable Energy Laboratory, Golden, Colorado, USA

    Google Scholar 

  • Berndes G (2002) Bioenergy and water – The implications of large-scale bioenergy production for water use and supply, Global Environ Chang 12, 253–271

    Article  Google Scholar 

  • Berndes G, Hoogwijk M, Van Den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies, Biomass Bioenergy 25, 1–28

    Article  Google Scholar 

  • Borrero MAV, Pereira JTV, Miranda EE (2003) An environmental management method for sugarcane alcohol production in Brazil, Biomass Bioenergy 25, 287–299

    Article  Google Scholar 

  • Botha T, von Blottnitz H (2006) A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis, Energy Policy 34, 2654–2661

    Article  Google Scholar 

  • Brye KR, Norman JM, Bundy LG, Gower ST (2001) Nitrogen and carbon leaching in agroecosystems and their role in denitrification potential, J Environ Qual 30, 58–70

    Article  PubMed  CAS  Google Scholar 

  • Camill P, McKone MJ, Sturges ST, Severud WJ, Ellis E, Limmer J, et al (2004) Community- and ecosystem-level changes in a species-rich tallgrass prairie restoration, Ecol Appl 14, 1680–1694

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems, Nature 443, 989–992

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol Appl 8, 559–568

    Article  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review, J Environ Qual 35, 1633–1658

    Article  PubMed  CAS  Google Scholar 

  • Chambers RS, Herendeen RA, Joyce JJ, Penner PS (1979) Gasohol: does it or doesn’t it produce positive net energy? Science 206, 789–795

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat Biotechnol 21, 1229–1232

    Article  PubMed  CAS  Google Scholar 

  • Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development, Science 302, 1528–1531

    Article  PubMed  Google Scholar 

  • Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureux S (2005) Biodiversity: function and assessment in agricultural areas. a review, Agron Sustain Dev 25, 1–15

    Article  Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions, Global Change Biol 10, 509–518

    Article  Google Scholar 

  • Conant RT, Paustian K, Del Grosso SJ, Parton WJ (2005) Nitrogen pools and fluxes in grassland soils sequestering carbon, Nutr Cycl Agroecosys 71, 239–248

    Article  CAS  Google Scholar 

  • Cook JH, Beyea J, Keeler KH (1991) Potential impacts of biomass production in the United States on biological diversity, Annu Rev Energy Env 16, 401–431

    Article  Google Scholar 

  • Cook JR (2006) Toward cropping systems that enhance productivity and sustainability, Proc Natl Acad Sci (USA) 103, 18389–18394

    Article  CAS  Google Scholar 

  • Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR (2006) Prospects for developing perennial grain crops, Bioscience 56, 649–659

    Article  Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review, Nutr Cycl Agroecosys 72, 101–120

    Article  CAS  Google Scholar 

  • Cvengroŝ J, Cvengroŝová Z (2004) Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids, Biomass Bioenergy 27, 173–181

    Article  CAS  Google Scholar 

  • Daily GC (1995) Restoring value to the world’s degraded lands, Science 269, 350–354

    Article  PubMed  CAS  Google Scholar 

  • De Broeck HJ, Lemmens CMHM, Gielen B, Bossuyt H, Malchair S, Carnol M, et al (2006) Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity, Environ Exp Bot, doi:10. 1016/j.envexpbot.2006.1007.1001

    Google Scholar 

  • Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Renewable hydrogen from ethanol by autothermal reforming, Science 303, 993–997

    Article  PubMed  CAS  Google Scholar 

  • Demirbaş A (2003) Sustainable cofiring of biomass with coal, Energy Convers Manage 44, 1465–1479

    Article  Google Scholar 

  • De Oliveira ME, Vaughan BE, Rykiel EJ Jr (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint, Bioscience 55, 593–602

    Article  Google Scholar 

  • de Vries BJM, van Vuuren DP, Hoogwijk MM (2007) Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach, Energy Policy 35, 2590-2610

    Article  Google Scholar 

  • Dodds WK (2006) Nutrients and the “dead zone”: the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico, Front Ecol 4, 211–217

    Article  Google Scholar 

  • Dolan MS, Clapp CE, Allmaras RR, Baker JM, Molina JAE (2006) Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management, Soil Till Res 89, 221–231

    Article  Google Scholar 

  • Dorian JP, Franssen HT, Simbeck DR (2006) Global challenges in energy, Energy Policy 34, 1984–1991

    Article  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses, Nature 396, 262–265

    Article  CAS  Google Scholar 

  • Energy Information Administration (2006) International energy outlook, DOE/EIA-0484(2006), United States Department of Energy, Washington DC, USA

    Google Scholar 

  • Ezzati M, Bailis R, Kammen DM, Holloway T, Price L, Cifuentes LA, et al (2004) Energy management and global health, Annu Rev Environ Resour 29, 383–419

    Article  Google Scholar 

  • FAPRI (2006) US and world agricultural outlook, FAPRI Staff Report 06-FSR 1, Food and Agricultural Policy Research Institute, Ames, Iowa, USA

    Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals, Science 311, 506–508

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Keller AA (2000) Cost–benefit analysis of methyl tert-butyl ether and alternative gasoline formulations, Environ Sci Policy 3, 173–188

    Article  Google Scholar 

  • Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT Jr, Rasnake M, et al (2006) Long-term yield potential of switchgrass-for-biofuel systems, Biomass Bioenergy 30, 198–206

    Article  Google Scholar 

  • Florine SE, Moore KJ, Fales SL, White TA, Burras CL (2006) Yield and composition of herbaceous biomass harvested from naturalized grassland in southern Iowa, Biomass Bioenergy 30, 522–528

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al (2005) Global consequences of land use, Science 309, 570–574

    Article  PubMed  CAS  Google Scholar 

  • Foyle T, Jennings L, Mulcahy P (2006) Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw, Bioresour Technol, doi:10.1016/j.biortech.2006.1010.1013

    PubMed  Google Scholar 

  • Frank AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA (2004) Biomass and carbon partitioning in switchgrass, Crop Sci 44, 1391–1396

    Article  CAS  Google Scholar 

  • Gallagher PW, Dikeman M, Fritz J, Wailes E, Gauthier W, Shapouri H (2003) Supply and cost estimates for biomass from crop residues in the United States, Environ Res Econ 24, 335–358

    Article  Google Scholar 

  • Gebhart DL, Johnson HB, Mayeux HS, Polley HW (1994) The CRP increases soil organic carbon, J Water Soil Conserv 49, 488–492

    Google Scholar 

  • Geyer WA (2006) Biomass production in the central great plains USA under various coppice regimes, Biomass Bioenergy 30, 778–783

    Article  Google Scholar 

  • Graboski MS (2002) Fossil energy use in the manufacture of corn ethanol, Prepared for the National Corn Growers Association, St Louis, Missouri, USA

    Google Scholar 

  • Grandy AS, Loecke TD, Parr S, Robertson GP (2006) Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems, J Environ Qual 35, 1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature, Science 307, 550–555

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower, Proc Natl Acad Sci (USA) 103, 13890–13895

    Article  CAS  Google Scholar 

  • Guo Q (2006) The diversity-biomass-productivity relationships in grassland management and restoration, Basic Appl Ecol, doi:10.1016/j.baae.2006.1002.1005

    Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs, Bioresour Technol 97, 671–678

    Article  PubMed  CAS  Google Scholar 

  • Hallam A, Anderson IC, Buxton DR (2001) Comparative economic analysis of perennial, annual, and intercrops for biomass production, Biomass Bioenergy 21, 407–424

    Article  Google Scholar 

  • Hamelinck CN, Faaij APC (2006) Outlook for advanced biofuels, Energy Policy 34, 3268–3283

    Article  Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: tchno-economic performance in short-, middle-, and long-term, Biomass Bioenergy 28, 384–410

    Article  CAS  Google Scholar 

  • Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1990-present, Environ Sci Technol 40, 1744–1750

    Article  PubMed  CAS  Google Scholar 

  • Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol-diesel fuel blends – A review, Bioresour Technol 96, 277–285

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change, Proc Natl Acad Sci (USA) 103, 14288–14293

    Article  CAS  Google Scholar 

  • Heal G, Walker B, Levin S, Arrow K, Dasgupta P, Daily G, et al (2004) Genetic diversity and interdependent crop choices in agriculture, Res Energy Econ 26, 175–184

    Article  Google Scholar 

  • Heaton E, Voight T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 biomass crops in relation to nitrogen, temperature and water, Biomass Bioenergy 27, 21–30

    Article  Google Scholar 

  • Herrera S (2006) Bonkers about biofuels, Nat Biotechnol 24, 755–760

    Article  PubMed  CAS  Google Scholar 

  • Hey DL, Urban LS, Kostel JA (2005) Nutrient farming: The business of environmental management, Ecol Eng 24, 279–287

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, Proc Natl Acad Sci (USA) 103, 11206–11210

    Article  CAS  Google Scholar 

  • Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet, Science 298, 981–987

    Article  PubMed  CAS  Google Scholar 

  • Hoogwijk M, Faaij A, Van Den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential for biomass for energy, Biomass Bioenergy 25, 119–133

    Google Scholar 

  • Hoogwijk M, De Vries B, Turkenburg W (2004) Assessment of the global and regional geographical, technical and economic potential of onshore wind energy, Energy Econ 26, 889–919

    Article  Google Scholar 

  • Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics, Soil Sci Soc Am J 69, 188–196

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al (2005) Effects of biodiversity on ecosystem functioning: aconsensus of current knowledge, Ecol Monogr 75, 3–35

    Article  Google Scholar 

  • Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2006) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios, Biomass Bioenergy doi:10.1016/j.biombioe.2006.07.006

    Google Scholar 

  • Hu J, Du Z, Li C, Min E (2005) Study on the lubrication properties of biodiesel as fuel lubricity enhancers, Fuel 84, 1601–1606

    CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem Rev 106, 4044–4098

    Article  PubMed  CAS  Google Scholar 

  • Huggins DR, Buyanovsky GA, Wagner GH, Brown JR, Darmody RG, Peck TR, et al (1998) Soil organic C in the tallgrass prairie-derived region of the corn belt: Effects of long-term crop management, Soil Till Res 47, 219–234

    Article  Google Scholar 

  • Huggins DR, Randall GW, Russelle MP (2001) Subsurface drain losses of water and nitrate following conversion of perennials to row crops, Agron J 93, 477–486

    Article  Google Scholar 

  • Husain SA, Rose DW, Archibald SO (1998) Identifying agricultural sites for biomass energy production in Minnesota, Biomass Bioenergy 15, 423–435

    Article  Google Scholar 

  • Jackson RB, Schlesinger WH (2004) Curbing the US carbon deficit, Proc Natl Acad Sci (USA) 101, 15827–15829

    Article  CAS  Google Scholar 

  • Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands, Nature 418, 623–626

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science 308, 1901–1905

    Article  PubMed  CAS  Google Scholar 

  • Johnson JMF, Reicosky DC, Allmaras RR, Sauer TJ, Venterea RT, Dell CJ(2005) Greenhouse gas contributions and mitigation potential of agriculture in the central USA, Soil Till Res 83, 73–94

    Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database, Agron J 98, 622–636

    Article  CAS  Google Scholar 

  • Karlen DL, Hurley EG, Andrews SS, Cambardella CA, Meek DW, Duffy MD, et al (2006) Crop rotation effect on soil quality at three northern corn/soybean belt locations, Agron J 98, 484–495

    Article  Google Scholar 

  • Keith DW, Decarolis JF, Denkenberger DC, Lenschow DH, Malyshev SL, Pacala S, et al (2004) The influence of large-scale wind power on global climate, Proc Natl Acad Sci (USA) 101, 16115–16120

    Article  CAS  Google Scholar 

  • Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental, and economic performance, Crit Rev Plant Sci 24, 385–406

    Article  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues, Biomass Bioenergy 26, 361–375

    Article  Google Scholar 

  • Kim S, Dale BE (2005a) Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions, Biomass Bioenergy 28, 475–489

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2005b) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel, Biomass Bioenergy 29, 426–439

    Article  Google Scholar 

  • Kim S, Dale BE (2006) Ethanol fuels: E10 or E85 – life cycle perspectives, Int J LCA 11, 117–121

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2005) Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity, Energy Fuels 19, 1192–1200

    CAS  Google Scholar 

  • Kramer SB, Reganold JP, Glover JD, Bohannan BJM, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils, Proc Natl Acad Sci (USA) 103, 4522–4527

    Article  CAS  Google Scholar 

  • Kumabe K, Hanaoka T, Fujimoto S, Minowa T, Sakanishi K (2007) Co-gasification of woody biomass and coal with air and steam, Fuel 86, 684–689

    Article  CAS  Google Scholar 

  • Kumar A, Sokhansanj S (2006) Switchgrass (Panicum virgatum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model, Bioresour Technol 98, 1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Kurkalova L, Kling CL, Zhao J (2004) Multiple benefits of carbon-friendly agricultural practices: empirical assessment of conservation tillage, Environ Manage 33, 519–527

    Article  PubMed  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security, Science 304, 1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Larson ED (2000) Modernizing biomass energy, In: Gómez-Echeverri L (Ed.), Climate Change and Development, pp 271–291

    Google Scholar 

  • Leemans R, Van Amstel A, Battjes C, Kreileman E, Toet S (1996) The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source, Global Environ Chang 6, 335–357

    Article  Google Scholar 

  • Lenzen M, Munksgaard J (2002) Energy and CO2 life-cycle analyses of wind turbines – review and applications, Renew Energy 26, 339–362

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass Bioenergy 25, 335–361

    Article  Google Scholar 

  • Liebig MA, Johnson HA, Hanson JD, Frank AB (2005) Soil carbon under switchgrass stands and cultivated cropland, Biomass Bioenergy 28, 347–354

    Article  CAS  Google Scholar 

  • Linden DR, Clapp CE, Dowdy RH (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota, Soil Till Res 56, 167–174

    Article  Google Scholar 

  • Lumpkins BS, Batal AB, Dale NM (2004) Evaluation of a distillers dried grains with solubles as a feed ingredient for broilers, Poultry Sci 83, 1891–1896

    CAS  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass, Science 251, 1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol R 66, 506–577

    Article  CAS  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses, Biomass Bioenergy 30, 648–654

    Article  Google Scholar 

  • Mann MK, Spath PL (2001) A life cycle assessment of biomass cofiring in a coal-fired power plant, Clean Prod Process 3, 81–91

    Article  Google Scholar 

  • Matson PA, Naylor R, Ortiz-Monasterio I (1998) Integration of environmental, agronomic, and economic aspects of fertilizer management, Science 280, 112–115

    Article  PubMed  CAS  Google Scholar 

  • McIsaac GF, David MB, Gertner GZ, Goolsby DA (2002) Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: a comparison of approaches, J Environ Qual 31, 1610–1622

    Article  PubMed  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass, Bioresour Technol 83, 37–46

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States, Biomass Bioenergy 28, 515–535

    Article  Google Scholar 

  • McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy, Biomass Bioenergy 14, 317–324

    Article  CAS  Google Scholar 

  • McLaughlin SB, De La Torre Ugarte DG, Garten CT Jr, Lynd LR, Sanderson MA, Tolbert VR, et al (2002) High-value renewable energy from prairie grasses, Environ Sci Technol 36, 2122–2129

    Article  PubMed  CAS  Google Scholar 

  • McLauchlan K, Hobbie SE, Post WM (2006) Conversion from agriculture to grassland builds soil organic matter on decadal timescales, Ecol Appl 16, 143–153

    Article  PubMed  Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks, Lancet 367, 859–869

    Article  PubMed  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review, Renew Sust Energ Rev 10, 248–268

    Article  CAS  Google Scholar 

  • Meyers N, Kent J (2003) New consumers: the influence of affluence on the environment, Proc Natl Acad Sci (USA) 100, 4963–4968

    Article  CAS  Google Scholar 

  • Milbrandt A (2005) A geographic perspective on the current biomass resource availability in the United States, NREL/TP-560-39181, National Renewable Energy Laboratory, Golden, Colorado, USA

    Google Scholar 

  • Montgomery R (2004) Development of biobased products, Bioresour Technol 91, 1–29

    Article  PubMed  CAS  Google Scholar 

  • Morrow WR, Griffin WM, Matthews HS (2006) Modeling switchgrass derived cellulosic ethanol distribution in the United States, Environ Sci Technol 40, 2877–2886

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Tyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour Technol 96, 673–686

    Article  PubMed  CAS  Google Scholar 

  • Murray LD, Best LB, Jabobsen TJ, Braster ML (2003) Potential effects on grassland birds of converting marginal cropland to switchgrass biomass production, Biomass Bioenergy 25, 167–175

    Article  Google Scholar 

  • Nabi N, Akhter S, Shahadat Z (2006) Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends, Bioresour Technol 97, 372–378

    Article  PubMed  CAS  Google Scholar 

  • Nelson GC, Bullock DS (2003) Simulating a relative environmental effect of glyphosate-resistant soybeans, Ecol Econ 45, 189–202

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources, Science 313, 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies, Science 305, 968–972

    Article  PubMed  CAS  Google Scholar 

  • Parikka M (2004) Global biomass fuel resources, Biomass Bioenergy 27, 613–620

    Article  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels, Crit Rev Plant Sci 23, 423–459

    Article  Google Scholar 

  • Patzek TW (2004) Thermodynamics of the corn-ethanol biofuel cycle, Crit Rev Plant Sci 23, 519–567

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, ODE/GO-102995-2135, ORNL/TM-2005/66, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    Google Scholar 

  • Pimentel D (2003) Ethanol fuels: energy balance, economics, and environmental impacts are negative, Nat Resour Res 12, 127–134

    Article  Google Scholar 

  • Powers SE (2005) Quantifying cradle-to-farm gate life-cycle impacts associated with fertilizer used for corn, soybean, and stover production, NREL/TP-510-37500, National Renewable Energy Laboratory, Golden, Colorado, USA

    Google Scholar 

  • Ptasinski KJ, Prins MJ, Pierik A (2007) Exergetic evaluation of biomass gasification, Energy 32, 568–574

    Article  CAS  Google Scholar 

  • Qin X, Mohan T, El-Halwagi M, Cornforth G, McCarl BA (2006) Switchgrass as an alternate feedstock for power generation: an integrated environmental, energy and economic life-cycle assessment, Clean Techn Environ Policy 8, 233–249

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al (2006) The path forward for biofuels and biomaterials, Science 311, 484–489

    Article  PubMed  CAS  Google Scholar 

  • Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, et al (2006) Adding biofuels to the invasive species fire? Science 313, 1742

    Article  PubMed  CAS  Google Scholar 

  • Reijinders L (2006) Conditions for the sustainability of biomass based fuel use, Energy Policy 34, 863–876

    Article  Google Scholar 

  • Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture, Front Ecol Environ 3, 38–46

    Article  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere, Science 289, 1922–1925

    Article  PubMed  CAS  Google Scholar 

  • Robertson GP, Broome JC, Chornesky EA, Frankenberger JR, Johnson P, Lipson M, et al (2004) Rethinking the vision for environmental research in US agriculture, Bioscience 54, 61–65

    Article  Google Scholar 

  • Robinson AL, Rhodes JS, Keith DW (2003) Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States, Environ Sci Technol 37, 5081–5089

    Article  PubMed  CAS  Google Scholar 

  • Roth AM, Sample DW, Ribic CA, Paine L, Undersander DJ, Bartelt GA (2005) Grassland bird response to harvesting switchgrass as a biomass energy crop, Biomass Bioenergy 28, 490–498

    Article  Google Scholar 

  • Salge JR, Dreyer BJ, Dauenhauer PJ, Schmidt LD (2006) Renewable hydrogen from nonvolative fuels by reactive flash volatilization, Science 314, 801–805

    Article  PubMed  CAS  Google Scholar 

  • Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, Urquiaga S, et al (2005) The potential of C4 perennial grasses for developing a global BIOHEAT industry, Crit Rev Plant Sci 24, 461–495

    Article  Google Scholar 

  • Schneider UA, McCarl BA (2003) Economic potential of biomass based fuels for greenhouse gas emission mitigation, Environ Res Econ 24, 291–312

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, et al (2005) Ecosystem service supply and vulnerability to global change in Europe, Science 310, 1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24, 777–784

    Article  PubMed  CAS  Google Scholar 

  • Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel, J Power Sources 156, 497–511

    Article  CAS  Google Scholar 

  • Semere T, Slater FM (2007) Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields, Biomass Bioenergy 31, 20–29

    Article  Google Scholar 

  • Seo J-S, Chong H, Park HS, Yoon K-O, Jung C, Kim JJ, et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4, Nat Biotechnol 23, 63–68

    Article  PubMed  CAS  Google Scholar 

  • Shapouri H, Duffield J, McAloon A, Wang M (2004) The 2001 net energy balance of corn-ethanol, US Department of Agriculture, Washington DC, USA

    Google Scholar 

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus, NREL/SR-580-24089, National Renewable Energy Laboratory, Golden, Colorado, USA

    Google Scholar 

  • Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, et al (2004) Energy and environmental aspects of using corn stover for fuel ethanol, J Ind Ecol 7, 117–146

    Article  Google Scholar 

  • Shinnar R, Citro F (2006) A road map to US decarbonization, Science 313, 1243–1244

    Article  PubMed  CAS  Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: Current status and future prospects, Global Change Biol 12, 2054–2076

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems, Soil Sci Soc Am J 70, 555–569

    Article  CAS  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ Pollut 100, 179–196

    Article  PubMed  CAS  Google Scholar 

  • Socolow RH (1999) Nitrogen management and the future of food: lessons from the management of energy and carbon, Proc Natl Acad Sci (USA) 96, 6001–6008

    Article  CAS  Google Scholar 

  • Spath PL, Dayton DC (2003) Preliminary screening – Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929, National Renewable Energy Laboratory, Golden, Colorado, USA

    Google Scholar 

  • Spiehs MJ, Whitney MH, Shurson GC (2002) Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota, J Anim Sci 80, 2639–2645

    PubMed  CAS  Google Scholar 

  • Stern R (2006a) Oil market power and United States national security, Proc Natl Acad Sci (USA) 103, 1650–1655

    Article  CAS  Google Scholar 

  • Stern R (2006b) The Iranian petroleum crisis and United States national security, Proc Natl Acad Sci (USA) 104, 377–382

    Article  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, et al (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization, Proc Natl Acad Sci (USA) 102, 4387–4392

    Article  CAS  Google Scholar 

  • Sullivan P, Hellerstein D, Hansen L, Johansson R, et al (2004) The Conservation reserve program: economic implications for rural America, AER-834, United States Department of Agriculture – Economic Research Service, Washington DC, USA

    Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, et al (2001) Forecasting agriculturally driven global environmental change, Science 292, 281–284

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices, Nature 318, 671–677

    Article  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass, Science 314, 1598–1600

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray), Science 313, 1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Tyson KS (2005) DOE analysis of fuels and coproducts from lipids, Fuel Process Technol 86, 1127–1136

    Article  CAS  Google Scholar 

  • United States Census Bureau (2006a) Fats and oils: oilseed crushings: 2005, Current Industrial Report M311J(05)-13

    Google Scholar 

  • United States Census Bureau (2006b) Fats and oils: production, consumption, and stocks: 2005, Current Industrial Report M311K(05)-13

    Google Scholar 

  • United States Department of Agriculture (2003) Agricultural chemical usage: 2002 field crops summary, National Agricultural Statistics Service, Washington DC, USA

    Google Scholar 

  • United States Department of Agriculture (2005) Agricultural chemical usage: 2004 field crops summary, National Agricultural Statistics Service, Washington DC, USA

    Google Scholar 

  • United States Department of Agriculture – Economic Research Service (2006) Feed grains database, http://www.ers. usda.gov/Data/feedgrains/

  • Van Gerpen J (2005) Biodiesel processing and production, Fuel Process Technol 86, 1097–1107

    Article  CAS  Google Scholar 

  • Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel: a sustainability assessment of willow biomass crops, Front Ecol Environ 2, 411–418

    Article  Google Scholar 

  • Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation, Biomass Bioenergy 30, 715–727

    Article  Google Scholar 

  • Walsh ME, De La Torre Ugarte DG, Shapouri H, Slinsky SP (2003) Bioenergy crop production in the United States, Environ Res Econ 24, 313–333

    Article  Google Scholar 

  • Wang M, Saricks C, Wu M (1997) Fuel-cycle fossil energy use and greenhouse gas emissions of fuel ethanol produced from US Midwest corn, Argonne National Laboratory, Argonne, Illinois, USA

    Google Scholar 

  • Wang T, Chang J, Lv P (2005) Synthesis gas production via biomass catalytic gasification with addition of biogas, Energy Fuels 19, 637–644

    Article  CAS  Google Scholar 

  • Wang WG, Lyons DW, Clark NN, Gautam M, Norton PM (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification, Environ Sci Technol 34, 933–939

    Article  CAS  Google Scholar 

  • Weimer PJ, Springer TL (2006) Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments, Bioresour Technol, doi:10.1016/j.biortech.2006.1006.1003

    PubMed  Google Scholar 

  • West TO, Marland G (2002) Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses, Environ Pollut 116, 439–444

    Article  PubMed  CAS  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis, Soil Sci Soc Am J 66, 1930–1946

    Article  CAS  Google Scholar 

  • Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review, Agron J 96, 1–17

    Article  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges, Annu Rev Energy Env 24, 189–226

    Article  Google Scholar 

  • Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power, Biotechnol Progr 19, 254–262

    Article  CAS  Google Scholar 

  • Zhang Y, Dubé MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresour Technol 89, 1–16

    CAS  Google Scholar 

  • Zhang R, Brown RC, Suby A (2004) Thermochemical generation of hydrogen from switchgrass, Energy Fuels 18, 251–256

    Article  CAS  Google Scholar 

  • Zwart RWR, Boerrigter H (2005) High efficiency co-production of synthetic natural gas (SNG) and Fischer–Tropsch (FT) transportation fuels from biomass, Energy Fuels 19, 591–597

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Initiative for Renewable Energy and the Environment (IREE) at the University of Minnesota. I gratefully appreciate the comments and advice I received from David Tilman, Steve Polasky, and Erik Nelson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Hill, J. (2009). Environmental Costs and Benefits of Transportation Biofuel Production from Food-and Lignocellulose-Based Energy Crops: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_10

Download citation

Publish with us

Policies and ethics