Skip to main content

Quantifying Terrestrial Ecosystem Carbon Dynamics in the Upper Yangtze Basin from 1975 to 2000

  • Chapter
  • First Online:
  • 903 Accesses

Abstract

Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon storage and loss. Here we use the General Ensemble Biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China's upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source pattern showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. This highlights the importance of land-use history in determining the regional carbon sink/source pattern.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard, F., Eva, H. D., Mayaux, P., Stibig, H. J., & Belward, A. (2004). Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochemical Cycles, 18, GB2008, doi:10.1029/2003GB002142

    Article  Google Scholar 

  • Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 104, 6550–6555

    Article  PubMed  CAS  Google Scholar 

  • Binford, M. W., Gholz, H. L., Starr, G., & Martin, T. A. (2006). Regional carbon dynamics in the Southeastern US Coastal plain: Balancing land cover type, timber harvesting, fire, and environmental variation. Journal of Geophysical Research-Atmospheres, 111, D24S92, doi: 10.1029/2005JD006820

    Article  Google Scholar 

  • Canadell, J. G. (2002). Land use effects on terrestrial carbon sources and sinks. Science in China Series C-Life Sciences, 45, 1–9

    Article  Google Scholar 

  • Cao, M. K., Prince, S. D., Small, J., & Goetz, S. J. (2004). Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7, 233–242

    Article  Google Scholar 

  • Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., et al.(2006). Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9, 1041–1050

    Article  CAS  Google Scholar 

  • Choi, S. D., Lee, K., & Chang, Y. S. (2002). Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea. Global Biogeochemical Cycles, 16 1089, doi:10.1029/2002GB001914

    Article  Google Scholar 

  • Conservation International. (2002). Biodiversity hotspots. Retrieved from http://www.biodiversityhotspots.org/xp/hotspots/China

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173

    Article  PubMed  CAS  Google Scholar 

  • Editorial Committee for Panzhihua Statistical Yearbook (ECPSY) (2002). Panzhihua's statistical yearbook from 1987 to 2001. Statistical Bureau of Panzhihua, Sichuan

    Google Scholar 

  • Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q., & Ci, L. (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320–2322

    Article  PubMed  CAS  Google Scholar 

  • Fang, J. Y., Piao, S. L., Tang, Z. Y., Peng, C. H., & Wei, J. (2001). Interannual variability in net primary production and precipitation. Science, 293, 1723a

    Article  Google Scholar 

  • Fang, J. Y., Piao, S. L., Field, C. B., Pan, Y. D., Guo, Q. H., Zhou, L. M., Peng, C. H., Tao, S. (2003). Increasing net primary production in China from 1982 to 1999. Frontiers in Ecology and the Environment, 1, 293–297.

    Google Scholar 

  • Fang, J. Y., Oikawa, T., Kato, T., Mo, W. H., & Wang, Z. H. (2005). Biomass carbon accumulation by Japan's forests from 1947 to 1995. Global Biogeochemical Cycles, 19, GB2004, doi:10.1029/2004GB002253

    Article  Google Scholar 

  • Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309, 570–574

    Article  PubMed  CAS  Google Scholar 

  • Gimona, A. Birnie, R. V., & Sibbald, A. R. (2006). Scaling up of a mechanistic dynamic model in a GIS environment to model temperate grassland production at the regional scale. Grass and Forage Science, 61, 315–331

    Article  Google Scholar 

  • Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B, 55, 378–390

    Article  Google Scholar 

  • Houghton, R. A., & Goodale, C. L. (2004). Effects of land-use change on the carbon balance of terrestrial ecosystems. In DeFries, R. S., Asner, G. P., & Houghton, R. A. (Eds.), Ecosystems and land use change(pp. 85–98). Washington, DC: American Geophysical Union

    Chapter  Google Scholar 

  • Iverson, L. R., Dale, M. E., Scott, C. T., & Prasad, A. (1997). A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (USA). Landscape Ecology, 12, 331–348

    Article  Google Scholar 

  • Jenkins, J. C., Birdsey, R. A., & Pan, Y. (2001). Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecological Applications, 11, 1174–1193

    Article  Google Scholar 

  • Jenkinson, D. S., Adams, D. E., & Wild, A. (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304–306

    Article  CAS  Google Scholar 

  • Kauppi, P. E., Ausubel, J. H., Fang, J. Y., Mather, A. S., Sedjo, R. A., & Waggoner, P. E. (2006) Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences of the United States of America, 103, 17574–17579

    Google Scholar 

  • Liu, S. G. (2008). Quantifying the spatial details of carbon sequestration potential and performance. In B. McPherson & E. Sundquist (Eds.), Science and technology of carbon sequestration. Washington, DC: American Geophysical Union (in press)

    Google Scholar 

  • Liu, S. G., Bliss, N., Sundquist, E., & Huntington, T. G. (2003). Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Global Biogeochemical Cycles, 17, 1074, doi:10.1029/2002GB002010

    Article  Google Scholar 

  • Liu, S. G., Kaire, M., Wood, E., Diallo, O., & Tieszen, L. L. (2004). Impacts of land use and climate change on carbon dynamics in South-Central Senegal. Journal of Arid Environments, 59, 583–604

    Article  Google Scholar 

  • Liu, S. G., Loveland, T. R., & Kurtz, R. M. (2004). Contemporary carbon dynamics in terrestrial ecosystems in the Southeastern plains of the United States. Environmental Management, 33, S442–S456

    Article  Google Scholar 

  • Lu, X. X. (2005). Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: Impact of environmental changes. River Research and Applications, 21, 229–243

    Article  Google Scholar 

  • Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., et al. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848–850

    Article  PubMed  Google Scholar 

  • Meyer, W. B., & Turner, B. L. (1992). Human-population growth and global land-use cover change. Annual Review of Ecology and Systematics, 23, 39–61

    Article  Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Pan, Y. D., Melillo, J. M., Mcguire, A. D., Kicklighter, D. W., Pitelka, L. F., Hibbard, K., et al. (1998). Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia, 114, 389–404

    Article  Google Scholar 

  • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., et al. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811–842

    Article  Google Scholar 

  • Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052–2077

    Article  Google Scholar 

  • Ramankutty, N., Gibbs, H. K., Achard, F., Defriess, R., Foley, J. A., & Houghton, R. A. (2007). Challenges to estimating carbon emissions from tropical deforestation. Global Change Biology, 13, 51–66

    Article  Google Scholar 

  • Rustad, L. E., Campbell, J. L., Marion, G. M., Norby, R. J., Mitchell, M. J., Hartley, A. E., et al. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543–562.

    Article  Google Scholar 

  • Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169–172

    Article  PubMed  CAS  Google Scholar 

  • Shi, X. Z., & Yu, D. S. (2002). A framework for the 1:1,000,000 soil database of China. Proceedings of the 17th World Congress of Soil Science, Bangkok

    Google Scholar 

  • Tian, H. Q., Melillo, J. M., Kicklighter, D. W., Mcguire, A. D., Helfrich, J. V. K., Moore, B., et al. (1998). Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396, 664–667

    Article  CAS  Google Scholar 

  • Tickle, P. K., Coops, N. C., & Hafner, S. D. (2001). Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3 pg-spatial. Forest Ecology and Management, 152, 275–291

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth's ecosystems. Science, 277, 494–499

    Article  CAS  Google Scholar 

  • Xiang, Q., Yin, R. S., Xu, J. T., & Deng, X. Z. (2009). Modeling the driving forces of land use and land cover changes along the upper Yangtze River of China. Environmental Management(under review)

    Google Scholar 

  • Zhao, S. Q., Peng, C. H., Jiang, H., Tian, D. L., Lei, X. D., & Zhou, X. L. (2006). Land use change in Asia and the ecological consequences. Ecological Research, 21, 890–896

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the U.S. National Science Foundation (project #0507948). Logistical support from Sichuan Agricultural University is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhao, S. et al. (2009). Quantifying Terrestrial Ecosystem Carbon Dynamics in the Upper Yangtze Basin from 1975 to 2000. In: Yin, R. (eds) An Integrated Assessment of China's Ecological Restoration Programs. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2655-2_7

Download citation

Publish with us

Policies and ethics