Skip to main content

The Roles of SUMO in Metabolic Regulation

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Abstract

Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and/or regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

SUMO:

Small Ubiquitin-related Modifier

SIM:

SUMO interacting motif

SREBPs:

sterol regulatory element binding proteins

bHLH-Zip:

basic helix-loop-helix leucine zipper

SRE:

sterol response element

SCAP:

SREBP cleavage-activating protein

INSIG:

insulin inducing gene

MAPKs:

mitogen-activated protein kinases

HDAC3:

histone deacetylase 3

ROS:

reactive oxygen species

SENPs:

sentrin specific proteases

PPARs:

peroxisome proliferators-activated receptors

KLF5:

Krüppel like transcription factor 5

Cpt1b:

carnitine palmitoyl transferase

Ucp2:

uncoupling proteins

ICA512:

islet cell autoantigen 512

STAT5:

signal transducer and activator of transcription

GLUTs:

glucose transporters

DRP1:

dynamin related protein 1

FIS1:

fission protein 1

MTHFD1:

methylenetetrahydrofolate dehydrogenase 1

SHMT1:

serine hydroxymethyltransferase 1

TYMS:

thymidylate synthase

DHFR:

dihyrdofolate reductase

References

  • Alkuraya, F. S., Saadi, I., Lund, J. J., Turbe-Doan, A., Morton, C. C. and Maas, R. L., 2006, SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313, 1751.

    Article  PubMed  Google Scholar 

  • Anderson, D. D., Woeller, C. F. and Stover, P. J., 2007, Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clin. Chem. Lab. Med. 45, 1760–1763.

    Article  PubMed  CAS  Google Scholar 

  • Arito, M., Horiba, T., Hachimura, S., Inoue, J. and Sato, R., 2008, Growth factor-induced phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby stimulating the expression of their target genes, low density lipoprotein uptake, and lipid synthesis. J. Biol. Chem. 283, 15224–15231.

    Article  PubMed  CAS  Google Scholar 

  • Bossis, G. and Melchior, F., 2006, Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. R. and Blackstone, C., 2007, Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583–21587.

    Article  PubMed  CAS  Google Scholar 

  • Civitarese, A. E. and Ravussin, E., 2008, Mitochondrial energetics and insulin resistance. Endocrinology 149, 950–954.

    Article  PubMed  CAS  Google Scholar 

  • Dorval, V., Mazzella, M. J., Mathews, P. M., Hay, R. T. and Fraser, P. E., 2007, Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem. J. 404, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. T. and Stover, P. J., 2008, Folate-mediated one-carbon metabolism. Vitam. Horm. 79, 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Frazier, A. E., Kiu, C., Stojanovski, D., Hoogenraad, N. J. and Ryan, M. T., 2006, Mitochondrial morphology and distribution in mammalian cells. Biol. Chem. 387, 1551–1558.

    Article  PubMed  CAS  Google Scholar 

  • Giorgino, F., De Robertis, O., Laviola, L., Montrone, C., Perrini, S., Mccowen, K. C. and Smith, R. J., 2000, The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc. Natl. Acad. Sci. U.S.A. 97, 1125–1130.

    Article  PubMed  CAS  Google Scholar 

  • Harder, Z., Zunino, R. and Mcbride, H., 2004, Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340–345.

    PubMed  CAS  Google Scholar 

  • Herbig, K., Chiang, E. P., Lee, L. R., Hills, J., Shane, B. and Stover, P. J., 2002, Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J. Biol. Chem. 277, 38381–38389.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, Y., Murata, S., Tanaka, K., Shimizu, M. and Sato, R., 2003, Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J. Biol. Chem. 278, 16809–16819.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Miyake, S., Wakita, H., Mcmullen, D. C., Azuma, Y., Auh, S. and Hallenbeck, J. M., 2007, Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J. Cereb. Blood Flow Metab. 27, 950–962.

    PubMed  CAS  Google Scholar 

  • Li, M., Guo, D., Isales, C. M., Eizirik, D. L., Atkinson, M., She, J. X. and Wang, C. Y., 2005, SUMO wrestling with type 1 diabetes. J. Mol. Med. 83, 504–513.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L. B., Omata, W., Kojima, I. and Shibata, H., 2007, The SUMO conjugating enzyme Ubc9 is a regulator of GLUT4 turnover and targeting to the insulin-responsive storage compartment in 3T3-L1 adipocytes. Diabetes 56, 1977–1985.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane, A. J., Liu, X., Perry, C. A., Flodby, P., Allen, R. H., Stabler, S. P. and Stover, P. J., 2008, Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. J. Biol. Chem. 283, 25846–25853.

    Article  PubMed  CAS  Google Scholar 

  • Makhnevych, T., Sydorskyy, Y., Xin, X., Srikumar, T., Vizeacoumar, F. J., Jeram, S. M., Li, Z., Bahr, S., Andrews, B. J., Boone, C. and Raught, B., 2009, Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol. Cell 33, 124–135.

    Article  PubMed  CAS  Google Scholar 

  • Manza, L. L., Codreanu, S. G., Stamer, S. L., Smith, D. L., Wells, K. S., Roberts, R. L. and Liebler, D. C., 2004, Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol. 17, 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  • Mziaut, H., Trajkovski, M., Kersting, S., Ehninger, A., Altkruger, A., Lemaitre, R. P., Schmidt, D., Saeger, H. D., Lee, M. S., Drechsel, D. N., Muller, S. and Solimena, M., 2006, Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5. Nat. Cell Biol. 8, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Oishi, Y., Manabe, I., Tobe, K., Ohsugi, M., Kubota, T., Fujiu, K., Maemura, K., Kubota, N., Kadowaki, T. and Nagai, R., 2008, SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat. Med. 14, 656–666.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H. and Hinchey, J., 2000, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  • Schuler, M., Ali, F., Chambon, C., Duteil, D., Bornert, J.M., Tardivel, A., Desvergne, B., Wahli, W., Chambon, P. and Metzger, D., 2006, PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Shin, Y. S., Chan, C., Vidal, A. J., Brody, T. and Stokstad, E. L., 1976, Subcellular localization of gamma-glutamyl carboxypeptidase and of folates. Biochim. Biophys. Acta 444, 794–801.

    Article  PubMed  CAS  Google Scholar 

  • Song, T., Li, G., Jing, G., Jiao, X., Shi, J., Zhang, B., Wang, L., Ye, X. and Cao, F., 2008, SUMO1 polymorphisms are associated with non-syndromic cleft lip with or without cleft palate. Biochem. Biophys. Res. Commun. 377, 1265–1268.

    Article  PubMed  CAS  Google Scholar 

  • Sonoda, J., Mehl, I. R., Chong, L. W., Nofsinger, R. R. and Evans, R. M., 2007, PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc. Natl. Acad. Sci. U.S.A. 104, 5223–5228.

    Article  PubMed  CAS  Google Scholar 

  • Stover, P. J., 2004, Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 62, S3–S12; discussion S13.

    Article  PubMed  Google Scholar 

  • Suen, D. F., Norris, K. L. and Youle, R. J., 2008, Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577–1590.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. and Mihara, K., 2007, Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529.

    Article  PubMed  CAS  Google Scholar 

  • Trajkovski, M., Mziaut, H., Altkruger, A., Ouwendijk, J., Knoch, K. P., Muller, S. and Solimena, M., 2004, Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells. J. Cell. Biol. 167, 1063–1074.

    Article  PubMed  CAS  Google Scholar 

  • Twig, G., Hyde, B. and Shirihai, O. S., 2008, Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092–1097.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. Y. and She, J. X., 2008, SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes Metab. Res. Rev. 24, 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. X., Zhang, C. L., Yu, R. T., Cho, H. K., Nelson, M. C., Bayuga-Ocampo, C. R., Ham, J., Kang, H. and Evans, R. M., 2004, Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2, e294.

    Article  PubMed  Google Scholar 

  • Wasiak, S., Zunino, R. and Mcbride, H. M., 2007, Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Weber, L. W., Boll, M. and Stampfl, A., 2004, Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J. Gastroenterol. 10, 3081–3087.

    PubMed  CAS  Google Scholar 

  • Woeller, C. F., Anderson, D. D., Szebenyi, D. M. and Stover, P. J., 2007, Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J. Biol. Chem. 282, 17623–17631.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Sheng, H., Warner, D. S. and Paschen, W., 2008a, Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J. Cereb. Blood Flow Metab. 28, 892–896.

    Article  PubMed  Google Scholar 

  • Yang, W., Sheng, H., Warner, D. S. and Paschen, W., 2008b, Transient global cerebral ischemia induces a massive increase in protein sumoylation. J. Cereb. Blood Flow Metab. 28, 269–279.

    Article  PubMed  Google Scholar 

  • Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M. and Mcbride, H. M., 2007, The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120, 1178–1188.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Stover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anderson, D.D., Stover, P.J. (2009). The Roles of SUMO in Metabolic Regulation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_8

Download citation

Publish with us

Policies and ethics