Skip to main content

SUMO and Nucleocytoplasmic Transport

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Abstract

The transport of proteins between the nucleus and cytoplasm occurs through nuclear pore complexes and is facilitated by numerous transport factors. These transport processes are often regulated by post-translational modification or, reciprocally, transport can function to control post-translational modifications through regulated transport of key modifying enzymes. This interplay extends to relationships between nucleocytoplasmic transport and SUMO-dependent pathways. Examples of protein sumoylation inhibiting or stimulating nucleocytoplasmic transport have been documented, both through its effects on the physical properties of cargo molecules and by directly regulating the functions of components of the nuclear transport machinery. Conversely, the nuclear transport machinery regulates the localization of target proteins and enzymes controlling dynamics of sumoylation and desumoylation thereby affecting the sumoylation state of target proteins. These inter-relationships between SUMO and the nucleocytoplasmic transport machinery, and the varied ways in which they occur, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alefantis, T., Barmak, K., Harhaj, E. W., Grant, C. and Wigdahl, B., 2003, Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax. J. Biol. Chem. 278, 21814–21822.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, D. and O’Hare, P., 2004, Characterization of the localization and proteolytic activity of the SUMO-specific protease SENP1. J. Biol. Chem. 279, 692–703.

    Article  PubMed  CAS  Google Scholar 

  • Besnault-Mascard, L., Leprince, C., Auffredou, M. T., Meunier, B., Bourgeade, M. F., Camonis, J., Lorenzoand, H. K. and Vazquez A., 2005, Caspase-8 sumoylation is associated with nuclear localization. Oncogene 24, 3268–3273.

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar, V., Valentine, S. A. and Courey, A. J., 2000, A functional interaction between Dorsal and components of the Smt3 conjugation machinery. J. Biol. Chem. 275, 4033–4040.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. and Ponstingl, H., 1994, RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl. Acad. Sci. U.S.A. 91, 2587–2591.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, F. R. and Ponstingl, H., 1991, Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, J. S., Wilkinson, S. T., Mosammaparast, N. and Pemberton, L. F., 2007, Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import. J. Biol. Chem. 282, 20142–20150.

    Article  PubMed  CAS  Google Scholar 

  • Booth, J. W., Belanger, K. D., Sannella, M. I. and Davis, L. I., 1999, The yeast nucleoporin Nup2p is involved in nuclear export of importin alpha/Srp1p. J. Biol. Chem. 274, 32360–32367.

    Article  PubMed  CAS  Google Scholar 

  • Boustany, L. M. and Cyert, M. S., 2002, Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site. Genes Dev. 16, 608–619.

    Article  PubMed  CAS  Google Scholar 

  • Carter, S., Bishcof, O., Dejean, A. and Vousden, K. H., 2007, C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat. Cell Biol. 9, 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Cingolani, G., Petosa, C., Weis, K. and Muller, C. W., 1999, Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P. and Taylor, C. T., 2003, Small ubiquitin-related modifier-1 modification mediates resolution of CREB-depedent responses to hypoxia. Proc. Natl. Acad. Sci. U.S.A. 100, 986–991.

    Article  PubMed  CAS  Google Scholar 

  • Conti, E., Uy, M., Leighton, L., Bloebel, G. and Kuriyan, J., 1998, Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor Karyopherin-α. Cell 94, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Cook, A., Bono, F., Jinek, M. and Conti, E., 2007, Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 76, 647–671.

    Article  PubMed  CAS  Google Scholar 

  • Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E., Moazed, D. and Gygi, S. P., 2005, A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth, D. J., Suprapto, A., Padovan, J. C., Chait, B. T., Wozniak, R. W. Rout, M. P. and Aitchison, J. D., 2001, Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol. 153, 1465–1478.

    Article  PubMed  CAS  Google Scholar 

  • Du, J. X., Bialkowska, A. B., McConnell, B. B. and Yang, V. W., 2008, SUMOylation regulates nuclear localization of Kruppel-like Factor 5. J. Biol. Chem. 283, 31991–32002.

    Article  PubMed  CAS  Google Scholar 

  • Enenkel, C., Blobel, G. and Rexach, M., 1995, Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J. Biol. Chem. 270, 16499–16502.

    Article  PubMed  CAS  Google Scholar 

  • Epps, J. L. and Tanda, 1998, The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr. Biol. 8, 1277–1280.

    Article  PubMed  CAS  Google Scholar 

  • Flint, S. J. and Gonzalez, R. A., 2003, Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr. Top. Microbiol. Immunol. 272, 287–330.

    PubMed  CAS  Google Scholar 

  • Floer, M., Blobel, G. and Rexach, M., 1997, Disassembly of RanGTP-Karyopherin β complex, an intermediate in nuclear protein import. J. Biol. Chem. 272, 19538–19546.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist, D., Mykytka, B. and Rexach, M., 2002, Accelerating the rate of disassembly of karyopherin.cargo complexes. J. Biol. Chem. 277, 18161–18172.

    Article  PubMed  CAS  Google Scholar 

  • Görlich, D., Henklein, P., Laskey, R. A. and Hartmann, E., 1996a, A 41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J. 15, 1818–1825.

    Google Scholar 

  • Görlich, D., Kostka, S., Kraft, R., Dingwall, C., Laskey, R. A, Hartmann, E. and Prehn, S., 1995, Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5, 383–392.

    Article  PubMed  Google Scholar 

  • Görlich, D., Pante, N., Kutay, U., Aebi, U. and Bischoff. F. R., 1996b, Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594.

    PubMed  Google Scholar 

  • Hamard, P.-J., Boyer-Guittaut, M., Camuzeaux, B., Dujardin, D., Hauss, C., Oelgeschlager, T., Vigneron, M., Kedinger, C. and Chatton, B., 2007, Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity. Nucleic Acids Res. 35, 1134–1144.

    Article  PubMed  CAS  Google Scholar 

  • Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S.-J., Heide, H., Emili, A. and Hochstrasser, M., 2005, Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisie. J. Biol. Chem. 280, 4102–4110.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R. T., 2005, SUMO: a history of modification. Mol. Cell. 18, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hood, J. K., Casolari, J. M. and Silver, P. A., 2000, Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-alpha export. J. Cell Sci. 113, 1471–1480.

    PubMed  CAS  Google Scholar 

  • Hood, J. K. and Silver, P. A., 1998, Cse1p is required for export of Srp1/importin-α from the nucleus in Saccharomyces cerevisiae. J. Biol. Chem. 273, 35142–35146.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. and Miyamoto, S., 2003, Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Hutten, S., Flotho, A., Melchior, F. and Kehlenbach, R. H., 2008, The Nup358-RanGAP complex is required for efficient importin a/b-dependent nuclear import. Mol. Biol. Cell. 19, 2300–2310.

    Article  PubMed  CAS  Google Scholar 

  • Imoto, S., Ohbayashi, N., Ikeda, O., Kamitani, S., Muromoto, R., Sekine, Y. and Matsuda, T., 2008, Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-β signaling. Biochem. Biophy. Res. Commun. 370, 359–365.

    Article  CAS  Google Scholar 

  • Itahana, Y., Yeh, E. T. and Zhang, Y., 2006, Nucleocytoplasmic shuttling modulates activity and ubiquitin-dependent turnover of SUMO-specific protease 2. Mol. Cell. Biol. 26, 4675–4689.

    Article  PubMed  CAS  Google Scholar 

  • Jaquenoud, M., van Drogan, F. and Peter, M., 2002, Cell cycle-dependent nuclear export of Cdh1 may contribute to the nuclear inactivation of APC/C(Cdh1). EMBO J. 21, 6515–6526.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., 2004, Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S. and Blobel, G., 1999, Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S. and Gupta, A. A., 2001, An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Kaffman, A., Rank, N. M., O’Neill, E. M., Huang, L. S. and O’Shea, 1998, The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396, 482–486.

    Article  PubMed  CAS  Google Scholar 

  • Kalderon, D., Richardson, W. D., Markham, A. F. and Smith, A. E., 1984, Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. K., Sung, K. S., Lee, S.-J., Kim, Y.-O., Choi, C. Y. and Kim, Y., 2005, Desumoylation of the homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1. FEBS Lett. 579, 6272–6278.

    Article  PubMed  CAS  Google Scholar 

  • Kindsmüller, K., Groitl, P., Härtl, B., Blanchette, P., Hauber, J. and Dobner, T., 2007, Intranuclear targeting and nuclear export of the adenovirus E1B-55 K protein are regulated by SUMO1 conjugation. Proc. Natl. Acad. Sci. U.S.A. 104, 6684–6689.

    Article  PubMed  Google Scholar 

  • Kirsch, O., Seeler, J.-S., Pichler, A., Gast, A., Müller, S., Miska, E., Mathieu, M., Narel-Bellan, A., Kouzarides, T., Melchior, F. and Dejean, A., 2002, The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–2691.

    Article  Google Scholar 

  • Kishi, A., Nakamura, T., Nishio, Y., Maegawa, H. and Kashiwagi, A., 2003, Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am. J. Physiol. Endocrinol. Metab. 284, 830–840.

    Google Scholar 

  • Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. and Gorlich, D., 1997, Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  • Lamsoul, I., Lodewick, J., Lebrun, S., Brasseur, R., Burny, A., Gaynor, R. B. and Bex, F., 2005, Exclusive ubiquitnation and sumoylation on overlapping lysine reisudes mediate NF-κB activation by the human T-cell leukemia virus Tax oncoprotein. Mol. Cell. Biol. 25, 10391–10406.

    Article  PubMed  CAS  Google Scholar 

  • Lange, A., Mills, R. E., Lange, C. J., Stewart, M., Devine, S. E. and Corbett, A. H., 2007, Classical nuclear localization signals: definition, function, and interaction with importin α. J. Biol. Chem. 282, 5101–5105.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G. W., Melchior, F., Matunis, M. J., Mahajan, R., Tian, Q. and Anderson, P., 1998, Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J. Biol. Chem. 273, 6503–6507.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. J., Matsura, Y., Liu, M. and Stewart, M., 2005, Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 221–229.

    Google Scholar 

  • Leisner, C., Kammerer, D., Denoth, A., Britschi, M., Barral, Y. and Liakopoulos, D., 2008, Regulation of mitotic spindle asymmetry by SUMO and the spindle-assembly checkpoint in yeast. Curr. Biol. 18, 1249–1255.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A., Felberbaum, R. and Hochstrasser, M., 2007, A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J. Cell Biol. 178, 813–827.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Brooks, C. L., Wu-Baer, F., Chen, D., Baer, R. and Gu, W., 2003, Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.-J. and Hochstrasser, M., 2003, The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J. Cell Biol. 160, 1069–1081.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Evdokimov, E., Shen, R.-F., Chao, C.-C., Tekle, E., Wang, T., Stadtman, E. R. Yang, D. C. H. and Chock P. B., 2004, Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. U.S.A. 101, 8551–8556.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Luo, Y., Lin, Y., Luo, D., Zhang, H., He, Y., Kim, Y.-O., Kim, Y., Tang, S. and Min, W., 2008, SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis. Cell Death Differ. 15, 739–750.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Sun, B., Liang, Y.-Y., Gast, A., Hildebrand, J., Brunicardi, F. C., Melchior, F. and Feng, X.-H., 2003, Opposed reguation of corepressor CtBP by SUMOylation and PDZ binding. Mol. Cell 11, 1389–1396.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Farmer, J. D., Lane, W. S., Friedman, J. Weissman, I., and Schreiber S. L., 1991, Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 66, 807–815.

    Google Scholar 

  • Love, D. C., Sweitzer, T. D. and Hanover, J. A., 1998, Reconstitution of HIV-1 rev nuclear export: independent requirements for nuclear import and export. Proc. Natl. Acad. Sci. U.S.A. 95, 10608–10613.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H., Gamper, M., Parent, C. and Firtel, R., 1997, The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase. EMBO J. 16, 4317–4332.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., Gerace, L. and Melchior F., 1997, A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan, R., Gerace, L. and Melchior F., 1998, Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol. 140, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Makhnevych, T., Lusk, C. P., Anderson, A. A., Aitchison, J. D. and Wozniak, R. W., 2003, Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115, 813–823.

    Article  PubMed  CAS  Google Scholar 

  • Makhnevych, T., Ptak, C., Lusk, C. P., Aitchison, J. D. and Wozniak, R. W., 2007, The role of karyopherins in the regulated sumoylation of septins. J. Cell Biol. 177, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Marelli, M., Dilworth, D. J., Wozniak, R.W. and Aitchison, J. D., 2001, The dynamics of karyopherin-mediated nuclear transport. Biochem. Cell Biol. 79, 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Matunis, M. J., Coutavas, E. and Blobel, G. 1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  • Matunis, M. J., Wu, J. and Blobel, G., 1998, SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, F., Schergaut, M. and Pilcher, A., 2003, SUMO: ligases, iospeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618.

    Article  PubMed  CAS  Google Scholar 

  • Morita, Y., Kanei-Ishii, C., Nomura, T. and Ishii, S., 2005, TARF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol. Biol. Cell. 16, 5433–5444.

    Article  PubMed  CAS  Google Scholar 

  • Moroianu, J., Blobel, G. and Radu, A., 1995a Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. U.S.A. 92, 2008–2011.

    Article  PubMed  CAS  Google Scholar 

  • Moroianu, J., Hijikata, M., Blobel, G. and Radu, A., 1995b, Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc. Natl. Acad. Sci. U.S.A. 92, 6532–6536.

    Article  PubMed  CAS  Google Scholar 

  • Moroianu, J., Blobel, G. and Radu, A., 1996, The binding site of karyopherin alpha for karyopherin beta overlaps with a nuclear localization sequence. Proc. Natl. Acad. Sci. U.S.A. 93, 6572–6576.

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi, Y., Yogosawa, S., Honda, R. and Nishida, T., 2002, Sumoylation of Mdm2 by inhibitor of activated STAT (PIAS) and RanBP2. J. Biol. Chem. 277, 50131–50136.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, K., Yoshida, M., Fujiwara, D., Nishikawa, M., Horinouchi, S. and Beppu, T., 1994, Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320–6324.

    PubMed  CAS  Google Scholar 

  • Palancade, B. and Doye, V., 2008, Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected roles. Trends Cell Biol. 18, 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Palancade, B., Liu, X., Garcia-Rubio, M., Aguilera, A., Zhao, X. and Doye, V., 2007, Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol. Biol. Cell 18, 2912–2923.

    Article  PubMed  CAS  Google Scholar 

  • Panse, V. G., Hardeland, U., Werner, T., Kuster, B. and Hurt, E., 2004, A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279, 41346–41351.

    Article  PubMed  CAS  Google Scholar 

  • Panse, V. G., Kressler, D., Pauli, A., Petfalski, E., Gnäding, M., Tollervey, D. and Hurt, E., 2006, Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitn-related modifier pathway. Traffic 7, 1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Panse, V. G., Küster, B., Gerstberger, T. and Hurt, E., 2003, Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat. Cell Biol. 5, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Pemberton, L. F. and Paschal, B. M., 2005, Mechanisms of receptor mediated nuclear import and nuclear export. Traffic 6, 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Pichler, A. and Melchior, F., 2001, Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic 3, 381–387.

    Article  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J. S., Dejean, A. and Melchior, F., 2002, The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Poon, I. K. H. and Jans, D. A., 2005, Regulation of nuclear transport: central role in development and transformation? Traffic 6, 173–186.

    Article  PubMed  CAS  Google Scholar 

  • Raabe, T., Bollum, F. J. and Manley, J. L., 1994, Poly(A) polymerase contains multiple functional domains. Mol. Cell. Biol. 14, 2946–2957.

    PubMed  CAS  Google Scholar 

  • Rexach, M. and Blobel, G., 1995, Protein import into the nuclei: association and dissociation reactions involving transport substrate, transport factors and nucleoporins. Cell 83, 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Ribbeck, K., Lipowsky, G., Kent, H. M., Stewart, M. and Gorlich, D., 1998, NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, J., Dilworth, S. M., Laskey, R. A. and Dingwall, C., 1991, Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Dargemont, C. and Hay, R. T., 2001, SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta, G. and Wilson, V. G., 2008, Identification of a nuclear export signal sequence for bovine papillomavirus E1 protein. Virology 373, 149–162.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H., Pu, R., Cavenagh, M. and Dasso, M. 1997, RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl. Acad. Sci. U.S.A. 94, 3736–3741.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H., Sparrow, D. B., Shiomi, T., Pu, R. T., Nishimoto, T., Mohun, T. J. and Dasso, M., 1998, Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr. Biol. 8, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, S., Briançon-Marjollet, A., Bossis, G., Lopez, M.-A., Piechaczyk, M., Jariel-Encontre, I., Debant, A. and Hipskind, R. A., 2004, SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. J. Cell Biol. 165, 767–773.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, K., Suzuki, N., Ono, Y., Tanaka, K., Maeno, M. and Ito, K., 2008, Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells. Bone 42, 886–893.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A., Brownawell, A. and Macara, I. G., 1998, Nuclear import of Ran is mediated by the transport factor NTF2. Curr. Biol. 8, 1403–1406.

    Article  PubMed  CAS  Google Scholar 

  • Sobko, A., Ma, H. and Firtel, R. A., 2002, Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev. Cell 2, 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Solsbacher, J., Maurer, P., Bischoff, F. R. and Schlenstedt, G., 1998, Cse1p is involved in export of yeast importin-α from the nucleus. Mol. Cell. Biol. 18, 6805–6815.

    PubMed  CAS  Google Scholar 

  • Solsbacher, J., Maurer, P., Vogel, F. and Schlenstedt, G., 2000, Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha. Mol. Cell. Biol. 20, 8468–8479.

    Article  PubMed  CAS  Google Scholar 

  • Stade, K., Vogel, F., Schwienhorst, I., Meusser, B., Volkwein, C., Nentwig, B., Dohmen, J. and Sommer, T., 2002, A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. J. Biol. Chem. 277, 49554–49561.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M., 2007, Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Terry, L. J., Shows, E. B. and Wente, S. R., 2007, Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  • Terui, Y., Saad, N., Jia, S., McKeon, F. and Yuan, J., 2004, Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J. Biol. Chem. 279, 28257–28265.

    Article  PubMed  CAS  Google Scholar 

  • Tran, E. J. and Wente, S. R., 2006, Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053.

    Article  PubMed  CAS  Google Scholar 

  • Vasupradha, V., Rao, N. and Manley, J. L., 2008, Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Gene Dev. 22, 499–511.

    Article  CAS  Google Scholar 

  • Vertegaal, A. C. O., Ogg, S. C., Jaffray, E., Rodriguez, M. S., Hay, R. T., Andersen, J. S. Mann, M. and Lamond, A. I., 2004, A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279, 33791–33798.

    Article  PubMed  CAS  Google Scholar 

  • Vethantham, V., Rao, N., and Manley, J. L., 2008, Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev. 22, 499–511.

    Google Scholar 

  • Vetter, I. R., Arndt, A., Kutay, U., Görlich, D. and Wittinghofer, A., 1999, Structural view of the Ran-importin b interaction at 2.3 Å resolution. Cell 97, 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Weis, K., Ryder, U. and Lamond, A. I., 1996, The conserved amino-terminal domain of hSRP1 is essential for nuclear protein import. EMBO J. 15, 1818–1825.

    PubMed  CAS  Google Scholar 

  • Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. and Yates, J. R., III, 2004, Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668.

    Article  PubMed  CAS  Google Scholar 

  • Wood, L. D., Irvin, B. J., Nucifora, G., Luce, K. S. and Hiebert, S. W., 2003, Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc. Nat. Acad. Sci. USA. 100, 3257–3262.

    Google Scholar 

  • Wozniak, R. W., Rout, M. P. and Aitchison, J. D., 1998, Karyopherins and kissing cousins. Trends Cell Biol. 8, 184–188.

    Article  PubMed  CAS  Google Scholar 

  • Wycoff, D. D. and O’Shea, E. K., 2005, Identification of Sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol. Cell. Proteomics 4, 73–83.

    Google Scholar 

  • Yaseen, N. R. and Blobel, G., 1999, GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin nup358. J. Biol. Chem. 274, 26493–26502.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, N., Hayashi, N., Seki, T., Panté, N., Ohba, T., Nishii, K., Kuma, K., Hayashida, T., Miyata, T., Aebi, U., Fukui, M. and Nishimoto, T., 1995, A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Saitoh, H. and Matunis, M. J., 2002, Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22, 6408–6508.

    Google Scholar 

  • Zhao, Y., Kwon, S. W. Anselmo, A., Kaur, K. and White M. A., 2004, Broad Spectrum Identification of Cellular Small Ubiquitin-related Modifier (SUMO) Substrate Proteins. J. Biol. Chem. 279, 20999–21002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Wozniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ptak, C., Wozniak, R.W. (2009). SUMO and Nucleocytoplasmic Transport. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_6

Download citation

Publish with us

Policies and ethics