Skip to main content

Emerging Roles for SUMO in mRNA Processing and Metabolism

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Abstract

SUMO has gained prominence as a regulator in a number of cellular processes; however, its possible roles in RNA metabolism have largely remained a black box. In this chapter we have assembled data from proteomic analyses, localization studies and key functional studies to extend SUMO’s role to the area of mRNA processing and metabolism. Proteomic analyses have identified multiple putative sumoylation targets in complexes functioning in almost all aspects of mRNA metabolism, including capping, splicing and polyadenylation of mRNA precursors. Possible regulatory roles for SUMO have emerged in pre-mRNA 3´ processing, where SUMO influences the functions of polyadenylation factors and activity of the entire complex. SUMO is also involved in regulating RNA editing and RNA binding by hnRNP proteins, and recent reports have suggested the involvement of the SUMO pathway in mRNA export. Together, these reports suggest the possibility of SUMO being involved in the regulation of many aspects of mRNA metabolism and hold the promise for exciting future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barnard, D. C., Ryan, K., Manley, J. L. and Richter, J. D., 2004, Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641–651.

    Article  PubMed  CAS  Google Scholar 

  • Bellare, P., Small, E. C., Huang, X., Wohlschlegel, J. A., Staley, J. P. and Sontheimer, E. J., 2008, A role for ubiquitin in the spliceosome assembly pathway. Nat. Struct. Mol. Biol. 15, 444–451.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D., 2002, The mRNA assembly line: transcription and processing machines in the same factory. Curr. Opin. Cell. Biol. 14, 336–342.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D. L., 2005, Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell. Biol. 17, 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Brow, D. A., 2002, Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K. M. and Gilmartin, G. M., 2003, A mechanism for the regulation of pre-mRNA 3´ processing by human cleavage factor Im. Mol. Cell 12, 1467–1476.

    Article  PubMed  CAS  Google Scholar 

  • Buratowski, S., 2005, Connections between mRNA 3´ end processing and transcription termination. Curr. Opin. Cell. Biol. 17, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Callebaut, I., Moshous, D., Mornon, J. P. and de Villartay, J. P., 2002, Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 30, 3592–3601.

    Article  PubMed  CAS  Google Scholar 

  • Colgan, D. F. and Manley, J. L., 1997, Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766.

    Article  PubMed  CAS  Google Scholar 

  • Colgan, D. F., Murthy, K. G., Prives, C. and Manley, J. L., 1996, Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282–285.

    Article  PubMed  CAS  Google Scholar 

  • Colgan, D. F., Murthy, K. G., Zhao, W., Prives, C. and Manley, J. L., 1998, Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J. 17, 1053–1062.

    Article  PubMed  CAS  Google Scholar 

  • Cordin, O., Banroques, J., Tanner, N. K. and Linder, P., 2006, The DEAD-box protein family of RNA helicases. Gene 367, 17–37.

    Article  PubMed  CAS  Google Scholar 

  • Das, B. K., Xia, L., Palandjian, L., Gozani, O., Chyung, Y. and Reed, R., 1999, Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol. 19, 6796–6802.

    PubMed  CAS  Google Scholar 

  • de Vries, H., Ruegsegger, U., Hubner, W., Friedlein, A., Langen, H. and Keller, W., 2000, Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19, 5895–5904.

    Article  PubMed  Google Scholar 

  • del Olmo, M., Mizrahi, N., Gross, S. and Moore, C. L., 1997, The Uba2 and Ufd1 proteins of Saccharomyces cerevisiae interact with poly(A) polymerase and affect the polyadenylation activity of cell extracts. Mol. Gen. Genet. 255, 209–218.

    Article  PubMed  Google Scholar 

  • Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E., Moazed, D. and Gygi, S. P., 2005, A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J. M., Keegan, L. P., Jaffray, E., Hay, R. T., O'Connell, M. A. and Carmo-Fonseca, M., 2005, SUMO-1 modification alters ADAR1 editing activity. Mol. Biol. Cell 16, 5115–5126.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss, G., Kim, V. N. and Kataoka, N., 2002, Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss, G., Matunis, M. J., Pinol-Roma, S. and Burd, C. G., 1993, hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321.

    Article  PubMed  CAS  Google Scholar 

  • Emili, A., Shales, M., McCracken, S., Xie, W., Tucker, P. W., Kobayashi, R., Blencowe, B. J. and Ingles, C. J., 2002, Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. RNA 8, 1102–1111.

    Article  PubMed  CAS  Google Scholar 

  • Galy, V., Gadal, O., Fromont-Racine, M., Romano, A., Jacquier, A. and Nehrbass, U., 2004, Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R. and Melchior, F., 2007, Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W. and Guthrie, C., 2004, The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13, 201–212.

    Article  PubMed  CAS  Google Scholar 

  • Gocke, C. B., Yu, H. and Kang, J., 2005, Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. M., Johnson, C. P., Hagan, H. and Corbett, A. H., 2003, The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc. Natl. Acad. Sci. U.S.A. 100, 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  • Guo, D., Han, J., Adam, B. L., Colburn, N. H., Wang, M. H., Dong, Z., Eizirik, D. L., She, J. X. and Wang, C. Y., 2005, Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem. Biophys. Res. Commun. 337, 1308–1318.

    Article  PubMed  CAS  Google Scholar 

  • Hall, L. L., Smith, K. P., Byron, M. and Lawrence, J. B., 2006, Molecular anatomy of a speckle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 664–675.

    PubMed  Google Scholar 

  • Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A. and Hochstrasser, M., 2005, Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R. T., 2005, SUMO: a history of modification. Mol. Cell 18, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • He, X. and Moore, C., 2005, Regulation of yeast mRNA 3´ end processing by phosphorylation. Mol. Cell 19, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I., 2006, Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, Y. and Manley, J. L., 1998, RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, Y. and Manley, J. L., 2000, RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429.

    PubMed  CAS  Google Scholar 

  • Huang, Y. and Steitz, J. A., 2005, SRprises along a messenger’s journey. Mol. Cell 17, 613–615.

    Article  PubMed  CAS  Google Scholar 

  • Ihara, M., Stein, P. and Schultz, R. M., 2008, UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol. Reprod. 79, 906–913.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., 2004, Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    Article  PubMed  CAS  Google Scholar 

  • Jurica, M. S. and Moore, M. J., 2003, Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14.

    Article  PubMed  CAS  Google Scholar 

  • Kafasla, P., Patrinou-Georgoula, M., Lewis, J. D. and Guialis, A., 2002, Association of the 72/74-kDa proteins, members of the heterogeneous nuclear ribonucleoprotein M group, with the pre-mRNA at early stages of spliceosome assembly. Biochem. J. 363, 793–799.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M. and Manley, J. L., 2007, The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3´ processing and transcription termination. Genes Dev. 21, 1779–1789.

    Article  PubMed  CAS  Google Scholar 

  • Kashyap, A. K., Schieltz, D., Yates, J., 3rd and Kellogg, D. R., 2005, Biochemical and genetic characterization of Yra1p in budding yeast. Yeast 22, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, I., Martin, G., Friedlein, A., Langen, H. and Keller, W., 2004, Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J. 23, 616–626.

    Article  PubMed  CAS  Google Scholar 

  • Kolev, N. G. and Steitz, J. A., 2005, Symplekin and multiple other polyadenylation factors participate in 3´ -end maturation of histone mRNAs. Genes Dev. 19, 2583–2592.

    Article  PubMed  CAS  Google Scholar 

  • Krecic, A. M. and Swanson, M. S., 1999, hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11, 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, U. and Wahle, E., 2004, Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta 1678, 67–84.

    PubMed  CAS  Google Scholar 

  • Lamond, A. I. and Spector, D. L., 2003, Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Lei, E. P., Krebber, H. and Silver, P. A., 2001, Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 15, 1771–1782.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Evdokimov, E., Shen, R. F., Chao, C. C., Tekle, E., Wang, T., Stadtman, E. R., Yang, D. C. and Chock, P. B., 2004, Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. U.S.A. 101, 8551–8556.

    Article  PubMed  CAS  Google Scholar 

  • Liang, S. and Lutz, C. S., 2006, p54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA 12, 111–121.

    Article  PubMed  CAS  Google Scholar 

  • Luna, R., Gaillard, H., Gonzalez-Aguilera, C. and Aguilera, A., 2008, Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117, 319–331.

    Article  PubMed  CAS  Google Scholar 

  • Makarova, O. V., Makarov, E. M. and Luhrmann, R., 2001, The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20, 2553–2563.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, S. S., Chu, C., Wada, T., Handa, H., Shatkin, A. J. and Reinberg, D., 2004, Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl. Acad. Sci. U.S.A. 101, 7572–7577.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, C. R., Kaneko, S., Zhang, H., Gebauer, D., Vethantham, V., Manley, J. L. and Tong, L., 2006, Polyadenylation factor CPSF-73 is the pre-mRNA 3´- end-processing endonuclease. Nature 444, 953–956.

    Article  PubMed  CAS  Google Scholar 

  • Mangus, D. A., Evans, M. C., Agrin, N. S., Smith, M., Gongidi, P. and Jacobson, A., 2004, Positive and negative regulation of poly(A) nuclease. Mol. Cell. Biol. 24, 5521–5533.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T. and Reed, R., 2002, An extensive network of coupling among gene expression machines. Nature 416, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Manza, L. L., Codreanu, S. G., Stamer, S. L., Smith, D. L., Wells, K. S., Roberts, R. L. and Liebler, D. C., 2004, Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol. 17, 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Contreras, R., Cloutier, P., Shkreta, L., Fisette, J. F., Revil, T. and Chabot, B., 2007, hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623, 123–147.

    Article  PubMed  Google Scholar 

  • Mathur, M., Tucker, P. W. and Samuels, H. H., 2001, PSF is a novel corepressor that mediates its effect through Sin3A and the DNA binding domain of nuclear hormone receptors. Mol. Cell. Biol. 21, 2298–2311.

    Article  PubMed  CAS  Google Scholar 

  • Matunis, M. J., Zhang, X. D. and Ellis, N. A., 2006, SUMO: the glue that binds. Dev. Cell 11, 596–597.

    Article  PubMed  CAS  Google Scholar 

  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M. and Bentley, D. L., 1997, The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Minty, A., Dumont, X., Kaghad, M. and Caput, D., 2000, Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275, 36316–36323.

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi, N. and Moore, C., 2000, Posttranslational phosphorylation and ubiquitination of the Saccharomyces cerevisiae Poly(A) polymerase at the S/G(2) stage of the cell cycle. Mol. Cell. Biol. 20, 2794–2802.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, K. G. and Manley, J. L., 1992, Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J. Biol. Chem. 267, 14804–14811.

    PubMed  CAS  Google Scholar 

  • Navascues, J., Bengoechea, R., Tapia, O., Casafont, I., Berciano, M. T. and Lafarga, M., 2008, SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J. Struct. Biol. 163, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Pandit, S., Wang, D. and Fu, X. D., 2008, Functional integration of transcriptional and RNA processing machineries. Curr. Opin. Cell Biol. 20, 260–265.

    Article  PubMed  CAS  Google Scholar 

  • Panse, V. G., Hardeland, U., Werner, T., Kuster, B. and Hurt, E., 2004, A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279, 41346–41351.

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot, N., 2004, New perspectives on connecting messenger RNA 3´ end formation to transcription. Curr. Opin. Cell Biol. 16, 272–278.

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot, N. and O'Sullivan, J., 2002, Polyadenylation: a tail of two complexes. Curr. Biol. 12, R855–R857.

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot, N. J., Furger, A. and Dye, M. J., 2002, Integrating mRNA processing with transcription. Cell 108, 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Raabe, T., Bollum, F. J. and Manley, J. L., 1991, Primary structure and expression of bovine poly(A) polymerase. Nature 353, 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Rappsilber, J., Ryder, U., Lamond, A. I. and Mann, M., 2002, Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245.

    Article  PubMed  CAS  Google Scholar 

  • Reed, R. and Hurt, E., 2002, A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Dargemont, C. and Stutz, F., 2004, Nuclear export of RNA. Biol. Cell 96, 639–655.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H. and Wilson, V. G., 2005, A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 4, 56–72.

    PubMed  CAS  Google Scholar 

  • Rosonina, E., Ip, J. Y., Calarco, J. A., Bakowski, M. A., Emili, A., McCracken, S., Tucker, P., Ingles, C. J. and Blencowe, B. J., 2005, Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol. Cell. Biol. 25, 6734–6746.

    Article  PubMed  CAS  Google Scholar 

  • Rosonina, E., Kaneko, S. and Manley, J. L., 2006, Terminating the transcript: breaking up is hard to do. Genes Dev. 20, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, K., 2007, Pre-mRNA 3´ cleavage is reversibly inhibited in vitro by cleavage factor dephosphorylation. RNA Biol. 4, 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, K., Calvo, O. and Manley, J. L., 2004, Evidence that polyadenylation factor CPSF-73 is the mRNA 3´ processing endonuclease. RNA 10, 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Sawicka, K., Bushell, M., Spriggs, K. A. and Willis, A. E., 2008, Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. 36, 641–647.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, S. C., Schwer, B., Shuman, S. and Bentley, D., 2000, Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, S. C., Zorio, D. A., Schwer, B., Shuman, S. and Bentley, D., 2004, A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol. Cell 13, 377–387.

    Article  PubMed  CAS  Google Scholar 

  • Shatkin, A. J. and Manley, J. L., 2000, The ends of the affair: capping and polyadenylation. Nat. Struct. Biol. 7, 838–842.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Reddy, B. and Manley, J. L., 2006, PP1/PP2A phosphatases are required for the second step of Pre-mRNA splicing and target specific snRNP proteins. Mol. Cell 23, 819–829.

    Article  PubMed  CAS  Google Scholar 

  • Shimazu, T., Horinouchi, S. and Yoshida, M., 2007, Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3´ -end processing. J. Biol. Chem. 282, 4470–4478.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. J., Query, C. C. and Konarska, M. M., 2008, ‘Nought may endure but mutability’: spliceosome dynamics and the regulation of splicing. Mol. Cell 30, 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. and Chen, Y., 2004, Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. U.S.A. 101, 14373–14378.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, K. and Hurt, E., 2001, Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413, 648–652.

    Article  PubMed  CAS  Google Scholar 

  • Takagaki, Y. and Manley, J. L., 2000, Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol. Cell. Biol. 20, 1515–1525.

    Article  PubMed  CAS  Google Scholar 

  • Takagaki, Y., Ryner, L. C. and Manley, J. L., 1989, Four factors are required for 3´- end cleavage of pre-mRNAs. Genes Dev. 3, 1711–1724.

    Article  PubMed  CAS  Google Scholar 

  • Tan, J. A., Hall, S. H., Hamil, K. G., Grossman, G., Petrusz, P. and French, F. S., 2002, Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J. Biol. Chem. 277, 16993–17001.

    Article  PubMed  CAS  Google Scholar 

  • Vassileva, M. T. and Matunis, M. J., 2004, SUMO modification of heterogeneous nuclear ribonucleoproteins. Mol. Cell. Biol. 24, 3623–3632.

    Article  PubMed  CAS  Google Scholar 

  • Venables, J. P., Koh, C. S., Froehlich, U., Lapointe, E., Couture, S., Inkel, L., Bramard, A., Paquet, E. R., Watier, V., Durand, M., Lucier, J. F., Gervais-Bird, J., Tremblay, K., Prinos, P., Klinck, R., Elela, S. A. and Chabot, B., 2008, Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell. Biol. 28, 6033–6043.

    Article  PubMed  CAS  Google Scholar 

  • Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M. and Lamond, A. I., 2006, Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5, 2298–2310.

    Article  PubMed  CAS  Google Scholar 

  • Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S., Hay, R. T., Andersen, J. S., Mann, M. and Lamond, A. I., 2004, A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279, 33791–33798.

    Article  PubMed  CAS  Google Scholar 

  • Vethantham, V., Rao, N. and Manley, J. L., 2007, Sumoylation modulates the assembly and activity of the pre-mRNA 3´ processing complex. Mol. Cell. Biol. 27, 8848–8858.

    Article  PubMed  CAS  Google Scholar 

  • Vethantham, V., Rao, N. and Manley, J. L., 2008, Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev. 22, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Wen, Y. and Shatkin, A. J., 1999, Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 13, 1774–1779.

    Article  PubMed  CAS  Google Scholar 

  • Will, C. L. and Luhrmann, R., 2001, Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301.

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. and Yates, J. R., 3rd. 2004, Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668.

    Article  PubMed  CAS  Google Scholar 

  • Wykoff, D. D. and O’Shea, E. K., 2005, Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol. Cell. Proteomics 4, 73–83.

    PubMed  CAS  Google Scholar 

  • Xu, X. M., Rose, A., Muthuswamy, S., Jeong, S. Y., Venkatakrishnan, S., Zhao, Q. and Meier, I., 2007, NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Saitoh, H. and Matunis, M. J., 2002, Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22, 6498–6508.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, W. and Manley, J. L., 1996, Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol. Cell. Biol. 16, 2378–2386.

    PubMed  CAS  Google Scholar 

  • Zhao, W. and Manley, J. L., 1998, Deregulation of poly(A) polymerase interferes with cell growth. Mol. Cell. Biol. 18, 5010–5020.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., Kwon, S. W., Anselmo, A., Kaur, K. and White, M. A., 2004, Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J. Biol. Chem. 279, 20999–21002.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, N., Kim, C. Y., Rizzu, P., Geula, C., Porter, D. R., Pothos, E. N., Squitieri, F., Heutink, P. and Xu, J., 2006, DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J. Biol. Chem. 281, 20940–20948.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F., Xue, Y., Lu, H., Chen, G. and Yao, X., 2005, A genome-wide analysis of sumoylation-related biological processes and functions in human nucleus. FEBS Lett. 579, 3369–3375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vethantham, V., Manley, J.L. (2009). Emerging Roles for SUMO in mRNA Processing and Metabolism. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_3

Download citation

Publish with us

Policies and ethics