Skip to main content

The Role of Sumoylation in Neurodegenerative Diseases

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Abstract

The covalent posttranslational modification of proteins are critical events in signalling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signalling pathways required for cell survival. One of the most complex signalling pathways is synaptic transmission. Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q. and Iwatsubo, T., 1998, Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884.

    PubMed  CAS  Google Scholar 

  • Bae, S. H., Jeong, J. W., Park, J. A., Kim, S. H., Bae, M. K., Choi, S. J. and Kim, K. W., 2004, Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 324, 394–400.

    Article  PubMed  CAS  Google Scholar 

  • Ballatore, C., Lee, V. M. and Trojanowski, J. Q., 2007, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 8, 663–672.

    Article  PubMed  CAS  Google Scholar 

  • Capili, A. D. and Lima, C. D., 2007, Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J. Mol. Biol. 369, 608–618.

    Article  PubMed  CAS  Google Scholar 

  • Carbia-Nagashima, A., Gerez, J., Perez-Castro, C., Paez-Pereda, M., Silberstein, S., Stalla, G. K., Holsboer, F. and Arzt, E., 2007, RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131, 309–323.

    Article  PubMed  CAS  Google Scholar 

  • Chan, H. Y., Warrick, J. M., Andriola, I., Merry, D. and Bonini, N. M., 2002, Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum. Mol. Genet. 11, 2895–2904.

    Article  PubMed  CAS  Google Scholar 

  • Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M. and Sudhof, T. C., 2005, Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383–396.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S. and Yeh, E. T., 2007, SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131, 584–595.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A. and Brundin, P., 2003, The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446.

    Article  PubMed  CAS  Google Scholar 

  • Cimarosti, H. and Henley, J. M., 2008, Investigating the mechanisms underlying neuronal death in ischaemia using in vitro oxygen-glucose deprivation: potential involvement of protein SUMOylation. The Neuroscientist 14, 626–636.

    Article  PubMed  CAS  Google Scholar 

  • Cimarosti, H., Lindberg, C., Bomholt, S. F., Ronn, L. C. and Henley, J. M., 2008, Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology 54, 280–289.

    Article  PubMed  CAS  Google Scholar 

  • David, G., Neptune, M. A. and DePinho, R. A., 2002, SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J. Biol. Chem. 277, 23658–23663.

    Article  PubMed  CAS  Google Scholar 

  • Dorval, V. and Fraser, P. E., 2006, Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J. Biol. Chem. 281, 9919–9924.

    Article  PubMed  CAS  Google Scholar 

  • Dorval, V. and Fraser, P. E., 2007, SUMO on the road to neurodegeneration. Biochim. Biophys. Acta 1773, 694–706.

    Article  PubMed  CAS  Google Scholar 

  • Dorval, V., Mazzella, M. J., Mathews, P. M., Hay, R. T. and Fraser, P. E., 2007, Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem. J. 404, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Fei, E., Jia, N., Yan, M., Zing, Z., Sun, Z., Wang, H., Zhang, T., Ma, X., Ding, H., Yao, X., Shi, Y. and Wang, G., 2006, SUMO-1 modification increases human SOD1 stability and aggregation. Biochem. Biophys. Res. Commun. 347, 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Gatchel, J. R. and Zoghbi, H. Y., 2005, Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755.

    Article  PubMed  CAS  Google Scholar 

  • Gil, J. M. and Rego, A. C., 2008, Mechanisms of neurodegeneration in Huntington's disease. Eur. J. Neurosci. 27, 2803–2820.

    Article  PubMed  Google Scholar 

  • Gocke, C. B., Yu, H. and Kang, J., 2005, Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012.

    Article  PubMed  CAS  Google Scholar 

  • Guedat, P. and Colland, F., 2007, Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem. 8, S14.

    Article  PubMed  Google Scholar 

  • Heun, P., 2007, SUMOrganization of the nucleus. Curr. Opin. Cell Biol. 19, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Issaeva, N., Bozko, P., Enge, M., Protopopova, M., Verhoef, L. G., Masucci, M., Pramanik, A. and Selivanova, G., 2004, Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, F. and Giulivi, C., 2005, Superoxide dismutases and their impact upon human health. Mol. Aspects Med. 26, 340–352.

    Article  PubMed  CAS  Google Scholar 

  • Kerscher, O., 2007, SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J. and Hallenbeck, J. M., 2006, Insights into cytoprotection from ground squirrel hibernation, a natural model of tolerance to profound brain oligaemia. Biochem. Soc. Trans. 34, 1295–1298.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Miyake, S., Wakita, H., McMullen, D. C., Azuma, Y., Auh, S. and Hallenbeck, J. M., 2007, Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J. Cereb. Blood Flow Metab. 27, 950–962.

    PubMed  CAS  Google Scholar 

  • Li, Y., Wang, H., Wang, S., Quon, D., Liu, Y. W. and Cordell, B., 2003, Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc. Natl. Acad. Sci. U.S.A. 100, 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, A. P., Robitaille, Y., Trojanowski, J. Q., Dickson, D. W. and Fischbeck, K. H., 1998, Polyglutamine-containing aggregates in neuronal intranuclear inclusion disease. Lancet 351, 884.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, A. P., Trojanowski, J. Q., Leonard, D. G., Chen, K. L., Barnett, J. L., Leverenz, J. B., Bird, T. D., Robitaille, Y., Malandrini, A. and Fischbeck, K. H., 1999, Ataxin 1 and ataxin 3 in neuronal intranuclear inclusion disease. Ann. Neurol. 46, 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B. and Shuai, K., 2008, Targeting the PIAS1 SUMO ligase pathway to control inflammation. Trends Pharmacol. Sci. 29, 505–509.

    Article  PubMed  Google Scholar 

  • Lois, L. M. and Lima, C. D., 2005, Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S., Nishimune, A., Mellor, J. R. and Henley, J. M., 2007a, SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447, 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S., Wilkinson, K. A., Nishimune, A. and Henley, J. M., 2007b, Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat. Rev. Neurosci. 8, 948–959.

    Article  PubMed  CAS  Google Scholar 

  • McCoy, M. K. and Tansey, M. G., 2008, TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation 5, 45.

    Article  PubMed  Google Scholar 

  • McFadden, K., Hamilton, R. L., Insalaco, S. J., Lavine, L., Al-Mateen, M., Wang, G. and Wiley, C. A., 2005, Neuronal intranuclear inclusion disease without polyglutamine inclusions in a child. J. Neuropathol. Exp. Neurol. 64, 545–552.

    PubMed  Google Scholar 

  • Michels, G. and Hoppe, U. C., 2008, Rapid actions of androgens. Front. Neuroendocrinol. 29, 182–198.

    Article  PubMed  CAS  Google Scholar 

  • Moore, D. J., Zhang, L., Dawson, T. M. and Dawson, V. L., 2003, A missense mutation (L166P) in DJ-1, linked to familial Parkinson's disease, confers reduced protein stability and impairs homo-oligomerization. J. Neurochem. 87, 1558–1567.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D. and Dasso, M., 2007, Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295.

    Article  PubMed  CAS  Google Scholar 

  • Nalepa, G., Rolfe, M. and Harper, J. W., 2006, Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596–613.

    Article  PubMed  CAS  Google Scholar 

  • Navascues, J., Bengoechea, R., Tapia, O., Casafont, I., Berciano, M. T. and Lafarga, M., 2008, SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J. Struct. Biol. 163, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Olzmann, J. A., Brown, K., Wilkinson, K. D., Rees, H. D., Huai, Q., Ke, H., Levey, A. I., Li, L. and Chin, L. S., 2004, Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function. J. Biol. Chem. 279, 8506–8515.

    Article  PubMed  CAS  Google Scholar 

  • Poukka, H., Karvonen, U., Janne, O. A. and Palvimo, J. J., 2000, Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. U.S.A. 97, 14145–14150.

    Article  PubMed  CAS  Google Scholar 

  • Pountney, D. L., Chegini, F., Shen, X., Blumbergs, P. C. and Gai, W. P., 2005, SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci. Lett. 381, 74–79.

    Article  PubMed  CAS  Google Scholar 

  • Pountney, D. L., Huang, Y., Burns, R. J., Haan, E., Thompson, P. D., Blumbergs, P. C. and Gai, W. P., 2003, SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp. Neurol. 184, 436–446.

    Article  PubMed  CAS  Google Scholar 

  • Pountney, D. L., Raftery, M. J., Chegini, F., Blumbergs, P. C. and Gai, W. P., 2008, NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol. 116, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Ren, R., 2005, Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 5, 172–183.

    Article  PubMed  CAS  Google Scholar 

  • Reverter, D. and Lima, C. D., 2005, Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Reverter, D. and Lima, C. D., 2006, Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat. Struct. Mol. Biol. 13, 1060–1068.

    Article  PubMed  CAS  Google Scholar 

  • Riley, B. E., Zoghbi, H. Y. and Orr, H. T., 2005, SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J. Biol. Chem. 280, 21942–21948.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A. and Poirier, M. A., 2004, Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17.

    Article  PubMed  Google Scholar 

  • Saitoh, H. and Hinchey, J., 2000, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  • Sampson, D. A., Wang, M. and Matunis, M. J., 2001, The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, G., Wood, J. D., Duan, K., Slunt, H. H., Gonzales, V., Yamada, M., Cooper, J. K., Margolis, R. L., Jenkins, N. A., Copeland, N. G., Takahashi, H., Tsuji, S., Price, D. L., Borchelt, D. R. and Ross, C. A., 1999, Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24, 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Seeler, J. S. and Dejean, A., 2003, Nuclear and unclear functions of SUMO. Nat. Rev. Cell Biol. 4, 690–699.

    Article  CAS  Google Scholar 

  • Shao, R., Zhang, F. P., Tian, F., Anders Friberg, P., Wang, X., Sjoland, H. and Billig, H., 2004, Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett. 569, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Tatham, M. H., Dong, C., Zagorska, A., Naismith, J. H. and Hay, R. T., 2006, SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat. Struct. Mol. Biol. 13, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., Maita, C., Seino, C., Iguchi-Ariga, S. M. and Ariga, H., 2006, Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ. 13, 96–108.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R. and Goedert, M., 1997, Alpha-synuclein in Lewy bodies. Nature 388, 839–840.

    Article  PubMed  CAS  Google Scholar 

  • Sramko, M., Markus, J., Kabat, J., Wolff, L. and Bies, J., 2006, Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J. Biol. Chem. 281, 40065–40075.

    Article  PubMed  CAS  Google Scholar 

  • Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y. Z., Cattaneo, E., Pandolfi, P. P., Thompson, L. M. and Marsh, J. L., 2004, SUMO modification of Huntingtin and Huntington's disease pathology. Science 304, 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M., Takahashi, K. and Ariga, H., 2004, DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Fujigasaki, J., Arai, K., Funata, N. and Fujigasaki, H., 2006, SUMOylation substrates in neuronal intranuclear inclusion disease. Neuropathol. Appl. Neurobiol. 32, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Ishida, M., Komano, H. and Takahashi, H., 2008, SUMO-1 immunoreactivity co-localizes with phospho-Tau in APP transgenic mice but not in mutant Tau transgenic mice. Neurosci. Lett. 441, 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Taira, T., Niki, T., Seino, C., Iguchi-Ariga, S. M. and Ariga, H., 2001, DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J. Biol. Chem. 276, 37556–37563.

    Article  PubMed  CAS  Google Scholar 

  • Tan, E. K. and Skipper, L. M., 2007, Pathogenic mutations in Parkinson disease. Hum Mutat. 28, 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Tempe, D., Piechaczyk, M. and Bossis, G., 2008, SUMO under stress. Biochem. Soc. Trans. 36, 874–878.

    Article  PubMed  CAS  Google Scholar 

  • Terashima, T., Kawai, H., Fujitani, M., Maeda, K. and Yasuda, H., 2002, SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport 13, 2359–2364.

    Article  PubMed  CAS  Google Scholar 

  • Tiraboschi, P., Hansen, L. A., Thal, L. J. and Corey-Bloom, J., 2004, The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62, 1984–1989.

    PubMed  CAS  Google Scholar 

  • Ueda, H., Goto, J., Hashida, H., Lin, X., Oyanagi, K., Kawano, H., Zoghbi, H. Y., Kanazawa, I., and Okazawa, H, 2002, Enhanced SUMOyalation in polyglutamine diseases. Biochem Biophys Res Commun. 293, 307–13.

    Google Scholar 

  • Um, J. W. and Chung, K. C., 2006, Functional modulation of parkin through physical interaction with SUMO-1. J. Neurosci. Res. 84, 1543–1554.

    Article  PubMed  CAS  Google Scholar 

  • Um, J. W., Min, D. S., Rhim, H., Kim, J., Paik, S. R. and Chung, K. C., 2006, Parkin ubiquitinates and promotes the degradation of RanBP2. J. Biol. Chem. 281, 3595–3603.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N. and Liu, E. A., 2004, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Tanji, K., Mori, F. and Takahashi, H., 2007, The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27, 494–506.

    Article  PubMed  Google Scholar 

  • Wang, L., Charroux, B., Kerridge, S. and Tsai, C. C., 2008, Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Rep. 9, 555-62.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, M. S., 2006, The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochem. 45, 7931–7939.

    Article  CAS  Google Scholar 

  • Wuerzberger-Davis, S. M., Nakamura, Y., Seufzer, B. J. and Miyamoto, S., 2007, NF-kappaB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26, 641–651.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Sheng, H., Homi, H. M., Warner, D. S. and Paschen, W., 2008a, Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation – a new target for therapeutic intervention? J. Neurochem. 106, 989–999.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Sheng, H., Warner, D. S. and Paschen, W., 2008b, Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J. Cereb. Blood Flow Metab. 28, 892–896.

    Article  PubMed  Google Scholar 

  • Yang, W., Sheng, H., Warner, D. S. and Paschen, W., 2008c, Transient global cerebral ischemia induces a massive increase in protein sumoylation. J. Cereb. Blood Flow Metab. 28, 269–279.

    Article  PubMed  Google Scholar 

  • Yazawa, I., Nukina, N., Hashida, H., Goto, J., Yamada, M. and Kanazawa, I., 1995, Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat. Genet. 10, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Yunus, A. A. and Lima, C. D., 2006, Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13, 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Goodson, M. L., Hong, Y. and Sarge, K. D., 2008, MEL-18 interacts with HSF2 and the SUMO E2 UBC9 to inhibit HSF2 sumoylation. J. Biol. Chem. 283, 7464–7469.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. Q. and Sarge, K. D., 2008, Sumoylation of amyloid precursor protein negatively regulates Abeta aggregate levels. Biochem. Biophys. Res. Commun. 374, 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. and Yao, T. P., 2005, Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 25, 8456–8464.

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi, H. Y. and Orr, H. T., 2000, Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dina Anderson is a PhD student funded by UCB Pharm S.A. We thank Kevin Wilkinson for a critical reading of the manuscript. We are grateful to the Wellcome Trust, BBSRC, MRC and the European Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Henley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anderson, D.B., Cimarosti, H., Henley, J.M. (2009). The Role of Sumoylation in Neurodegenerative Diseases. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_14

Download citation

Publish with us

Policies and ethics