Skip to main content

Introduction to Sumoylation

  • Chapter
  • First Online:
Book cover SUMO Regulation of Cellular Processes
  • 544 Accesses

Abstract

Reversible post-translational modification is a rapid and efficient system to control the activity of pre-existing proteins. Modifiers range from small chemical moieties, such as phosphate groups, to proteins themselves as the modifier. The patriarch of the protein modifiers is ubiquitin which plays a central role in protein degradation and protein targeting. Over the last 10 years, the ubiquitin family has expanded to include a variety of ubiquitin-related small modifier proteins that are all covalently attached to a lysine residue on target proteins via series of enzymatic reactions. Of these newly discovered ubiquitin-like proteins, the SUMO family has gained prominence as a major regulatory component that impacts numerous aspects of cell growth and differentiation. Unlike ubiquitinylation which often leads to protein turn over, sumoylation performs a variety of functions such as altering protein stability, protein trafficking, protein-protein interaction, and protein activity. This chapter will introduce the basic properties of SUMO proteins and the general tenets of sumoylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ayaydin, F. and Dasso, M., 2004, Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol. Biol. Cell. 15, 5208–5218.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R. and Becker, J., 1998, Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280, 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. and Freemont, P. S., 1996, PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982.

    PubMed  CAS  Google Scholar 

  • Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H. and Owerbach, D., 2004, A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 279, 27233–27238.

    Article  PubMed  CAS  Google Scholar 

  • Chen, A., Mannen, H. and Li, S. S., 1998, Characterization of mouse ubiquitin-like SMT3A and SMT3B cDNAs and gene/pseudogenes. Biochem. Mol. Biol. Int. 46, 1161–1174.

    PubMed  CAS  Google Scholar 

  • Chung, T. L., Hsiao, H. H., Yeh, Y. Y., Shia, H. L., Chen, Y. L., Liang, P. H., Wang, A. H. J., Khoo, K. H. and Li, S. S. L., 2004, In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein – Definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. J. Biol. Chem. 279, 39653–39662.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S. and Hay, R. T., 1998, SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Deyrieux, A. F., Rosas-Acosta, G., Ozbun, M. A. and Wilson, V. G., 2007, Sumoylation dynamics during keratinocyte differentiation. J. Cell Sci. 120, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H. S., Xu, Y. Q., Chen, Q., Dai, H. M., Tang, Y. J., Wu, J. H. and Shi, Y. Y., 2005, Solution structure of human SUMO-3 C47S and its binding surface for Ubc9. Biochemistry 44, 2790–2799.

    Article  PubMed  CAS  Google Scholar 

  • Evdokimov, E., Sharma, P., Lockett, S. J., Lualdi, M. and Kuehn, M. R., 2008, Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J. Cell Sci. 121, 4106–4113.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G., 2005, SUMO changes sox for developmental diversity. Mol. Cell 20, 495–496.

    Article  PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D. and Hay, R. T., 2003, p300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L. and Yeh, E. T. H., 2006, Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem. 281, 15869–15877.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L. M., Millas, S., Maul, G. G. and Yeh, E. T. H., 2000, Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem. 275, 3355–3359.

    Article  PubMed  CAS  Google Scholar 

  • Goodson, M. L., Hong, Y., Rogers, R., Matunis, M. J., Park-Sarge, O. K. and Sarge, K. D., 2001, SUMO-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J. Biol. Chem. 276, 18513–18518.

    Article  PubMed  CAS  Google Scholar 

  • Hang, J. and Dasso, M., 2002, Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem. 277, 19961–19966.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R. T., 2005, SUMO: a history of modification. Mol. Cell 18, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Heun, P., 2007, SUMOrganization of the nucleus. Curr. Opin. Cell Biol. 19, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. and Jentsch, S., 2002, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Y. L., Rogers, R., Matunis, M. J., Mayhew, C. N., Goodson, M., Park-Sarge, O. K. and Sarge, K. D., 2001, Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J. Biol. Chem. 276, 40263–40267.

    PubMed  CAS  Google Scholar 

  • Huang, W. C., Ko, T. P., Li, S. S. L. and Wang, A. H. J., 2004, Crystal structures of the human SUMO-2 protein at 1.6 angstrom and 1.2 angstrom resolution – Implication on the functional differences of SUMO proteins. Eur. J. Biochem. 271, 4114–4122.

    Article  PubMed  CAS  Google Scholar 

  • Ihara, M., Koyama, H., Uchimura, Y., Saitoh, H. and Kikuchi, A., 2007, Noncovalent binding of small ubiquitin-related modifier (SUMO) protease to SUMO is necessary for enzymatic activities and cell growth. J. Biol. Chem. 282, 16465–16475.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S. and Gupta, A. A., 2001, An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., Schwienhorst, I., Dohmen, R. J. and Blobel, G., 1997, The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519.

    Article  PubMed  CAS  Google Scholar 

  • Kagey, M. H., Melhuish, T. A. and Wotton, D., 2003, The polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Kamitani, T., Kito, K., Nguyen, H. P., Fukuda-Kamitani, T. and Yeh, E. T., 1998a, Characterization of a second member of the sentrin family of ubiquitin-like proteins. J. Biol. Chem. 273, 11349–11353.

    Article  PubMed  CAS  Google Scholar 

  • Kamitani, T., Kito, K., Nguyen, H. P., Wada, H., Fukuda-Kamitani, T. and Yeh, E. T., 1998b, Identification of three major sentrinization sites in PML. J. Biol. Chem. 273, 26675–26682.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. H., Choi, C. Y. and Kim, Y., 1999, Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc. Natl. Acad. Sci. U.S.A. 96, 12350–12355.

    Article  PubMed  CAS  Google Scholar 

  • Klenk, C., Humrich, J., Quitterer, U. and Lohse, M. J., 2006, SUMO-1 controls the protein stability and the biological function of phosducin. J. Biol. Chem. 281, 8357–8364.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. J. and Hochstrasser, M., 1999, A new protease required for cell-cycle progression in yeast. Nature 398, 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Lois, L. M. and Lima, C. D., 2005, Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Long, J. Y., Wang, G. N., He, D. M. and Liu, F., 2004, Repression of Smad4 transcriptional activity by SUMO modification. Biochem. J. 379, 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Manza, L. L., Codreanu, S. G., Stamer, S. L., Smith, D. L., Wells, K. S., Roberts, R. L. and Liebler, D. C., 2004, Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol. 17, 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S., Wilkinson, K. A., Nishimune, A. and Henley, J. M., 2007, Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat. Rev. Neurosci. 8, 948–959.

    Article  PubMed  CAS  Google Scholar 

  • Matic, I., Macek, B., Hilger, M., Walther, T. C. and Mann, M., 2008, Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J. Proteome Res. 7, 4050–4057.

    Article  PubMed  CAS  Google Scholar 

  • Matunis, M. J., Coutavas, E. and Blobel, G., 1996, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, F., 2000, SUMO – Nonclassical ubiquitin [Review]. Annu. Rev. Cell Dev. Biol. 16, 591–626.

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk, J., Drag, M., Bekes, M., Cao, J. T., Ronai, Z. and Salvesen, G. S., 2007, Small ubiquitin-related modifier (SUMO)-specific proteases – Profiling the specificities and activities of human SENPs. J. Biol. Chem. 282, 26217–26224.

    Article  PubMed  CAS  Google Scholar 

  • Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M. and Yeh, E. T., 1996, Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol. 157, 4277–4281.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J. S., Dejean, A. and Melchior, F., 2002, The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Potts, P. R. and Yu, H. T., 2005, Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032.

    Article  PubMed  CAS  Google Scholar 

  • Prudden, J., Pebernard, S., Raffa, G., Slavin, D. A., Perry, J. J. P., Tainer, J. A., McGowan, C. H. and Boddy, M. N., 2007, SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101.

    Article  PubMed  CAS  Google Scholar 

  • Rangasamy, D., Woytek, K., Khan, S. A. and Wilson, V. G., 2000, SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J. Biol. Chem. 275, 37999–38004.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H. and Wilson, V. G., 2005, A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 4, 56–72.

    PubMed  CAS  Google Scholar 

  • Ross, S., Best, J. L., Zon, L. I. and Gill, G., 2002, SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842.

    Article  PubMed  CAS  Google Scholar 

  • Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F. and Grosschedl, R., 2001, PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H. and Hinchey, J., 2000, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D. and Muller, S., 2002, Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. U.S.A. 99, 2872–2877.

    Article  PubMed  CAS  Google Scholar 

  • Sharrocks, A. D., 2006, PIAS proteins and transcriptional regulation – more than just SUMO E3 ligases? Genes Dev. 20, 754–758.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Z. Y., Pardingtonpurtymun, P. E., Comeaux, J. C., Moyzis, R. K. and Chen, D. J., 1996, Ubl1, a human ubiquitin-like protein associating with human rad51/rad52 proteins. Genomics 36, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Leverson, J. D. and Hunter, T., 2007, Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112.

    Article  PubMed  CAS  Google Scholar 

  • Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M. P., Botting, C. H., Naismith, J. H. and Hay, R. T., 2001, Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.

    Article  PubMed  CAS  Google Scholar 

  • Tong, H., Hateboer, G., Perrakis, A., Bernards, R. and Sixma, T. K., 1997, Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387.

    Article  PubMed  CAS  Google Scholar 

  • Ungureanu, D., Vanhatupa, S., Kotaja, N., Yang, J., Aittomaki, S., Janne, O. A., Palvimo, J. J. and Silvennoinen, O., 2003, PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311–3313.

    Article  PubMed  CAS  Google Scholar 

  • Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S. R., Glanemann, C., Schnellhardt, M., Niessen, M., Scheel, H., Hofmann, K., Johnson, E. S., Praefcke, G. J. and Dohmen, R. J., 2007, Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282, 34167–34175.

    Article  PubMed  CAS  Google Scholar 

  • Verger, A., Perdomo, J. and Crossley, M., 2003, Modification with SUMO – A role in transcriptional regulation. EMBO Rep. 4, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Vertegaal, A. C. O., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M. and Lamond, A. I., 2006, Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5, 2298–2310.

    Article  PubMed  CAS  Google Scholar 

  • Weger, S., Hammer, E. and Heilbronn, R., 2005, Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 579, 5007–5012.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., Scholer, H. R. and Atchison, M. L., 2007, Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551–21560.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, V. G., 2004, Sumoylation: Molecular Biology and Biochemistry, Horizon Biosciences, Norfolk, UK.

    Google Scholar 

  • Xie, Y., Kerscher, O., Kroetz, M. B., McConchie, H. F., Sung, P. and Hochstrasser, M., 2007, The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282, 34176–34184.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. H., Jaffray, E., Hay, R. T. and Sharrocks, A. D., 2003, Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell 12, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F. P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I. and Janne, O. A., 2008, Sumo-1 function is dispensable in normal mouse development. Mol. Cell. Biol. 28, 5381–5390.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Ryan, J. J. and Zhou, H., 2004, Global analyses of sumoylated proteins in Saccharomyces cerevisiae – Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279, 32262–32268.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank other current and former members of the Wilson lab for discussions that helped form much of the work presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van G. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wilson, V.G. (2009). Introduction to Sumoylation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_1

Download citation

Publish with us

Policies and ethics