Interval analysis and verification of mathematical models

  • Tibor Csendes
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

This chapter provides an introduction to interval arithmetic-based techniques for the verification of mathematical models. Illustrative examples are described from the fields of circle packing, chaotic behaviour dynamical systems, and process network synthesis.


model verification interval methods reliable numerical algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alefeld, G. and J. Herzberger, Introduction to Interval Calculations. Academic Press, New York (1983).Google Scholar
  2. Bánhelyi, B., T. Csendes, and B.M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer. International Journal of Bifurcation and Chaos, 17, 735–748 (2007).CrossRefGoogle Scholar
  3. Bánhelyi, B., T. Csendes, B.M. Garay, and L. Hatvani, A computer-assisted proof for Sigma_3-chaos in the forced damped pendulum equation. SIAM Journal on Applied Dynamical Systems, 7, 843–867 (2008).CrossRefGoogle Scholar
  4. Bleher, J.H., S.M Rump U. Kulisch M. Metzger, Ch. Ullrich, and W. Walter, FORTRAN-SC. A study of a FORTRAN extension for engineering/scientific computation with access to ACRITH, Computing, 39, 93–110 1987CrossRefGoogle Scholar
  5. Csallner, A.E., T. Csendes, and A.B. Kocsis, Reliable numerical computation in civil engineering. Numerical Algorithms, 37, 85–91 (2004).CrossRefGoogle Scholar
  6. Csendes, T., An interval method for bounding level sets of parameter estimation problems. Computing, 41, 75–86, (1989).CrossRefGoogle Scholar
  7. Csendes, T., Interval method for bounding level sets: revisited and tested with global optimization problems. BIT, 30, 650–657 (1990).CrossRefGoogle Scholar
  8. Csendes, T., Optimization methods for process network synthesis — a case study. In: C. Carlsson and I. Eriksson (eds.) Global & Multiple Criteria Optimization and Information Systems Quality. Abo Academy, Turku, 1998, pp. 113–132.Google Scholar
  9. Csendes, T., Reliable optimization, methods and applications. DSc Dissertation, Hungarian Academy of Sciences, Budapest (2007).Google Scholar
  10. Csendes, T. and J. Pintér, A new interval method for locating the boundary of level sets. International Journal of Computer Mathematics, 49, 53–59 (1993).CrossRefGoogle Scholar
  11. Csendes, T., B. Bánhelyi, and L. Hatvani, Towards a computer-assisted proof for chaos in a forced damped pendulum equation. Journal of Computational and Applied Mathematics, 199, 378–383 (2007).CrossRefGoogle Scholar
  12. Csendes, T., B.M. Garay, and B. Bánhelyi, A verified optimization technique to locate chaotic regions of a Hénon system. Journal of Global Optimization, 35, 145–160 (2006).CrossRefGoogle Scholar
  13. Csendes, T., Z.B. Zabinsky, and B.P. Kristinsdottir, Constructing large feasible suboptimal intervals for constrained nonlinear optimization. Annals of Operations Research, 58, 279–293 (1995).CrossRefGoogle Scholar
  14. Fiacco, A.V., Sensitivity analysis for nonlinear programming using penalty methods. Mathematical Programming, 12, 287–311 (1976).CrossRefGoogle Scholar
  15. Galias, Z., and P. Zgliczynski, Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map. Nonlinearity, 14, 909–932 (2001).CrossRefGoogle Scholar
  16. Hammer, R., M. Hocks, U. Kulisch, and D. Ratz, Numerical Toolbox for Verified Computing I. Springer, Berlin (1993).Google Scholar
  17. Hansen, E., Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992).Google Scholar
  18. Jöllig, H.P., BIBINS/2.0 — C++ Bibliotheken för Vektoren und Matrizen über beliebigem skalaren Datentyp unter Berücksichtigungs spezieller spärlicher Strukturen sowie Intervall-datentypen. Bericht 92.6, Technical University of Hamburg-Harburg (1992).Google Scholar
  19. Kearfott, R.B., An interval branch and bound algorithm for bound constrained optimization problems. Journal of Global Optimization, 2, 259–280 (1992).CrossRefGoogle Scholar
  20. Klatte, R., U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich, PASCAL-XSC — Language Reference with Examples. Springer-Verlag, Berlin (1992).Google Scholar
  21. Klatte, R., U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch, C-XSC — A C++ Class Library for Extended Scientific Computing. Springer, Heidelberg (1993).Google Scholar
  22. Kovács, Z., F. Friedler, and L.T. Fan, Recycling in a separation process structure. AIChE Journal, 39, 1087–1089 (1993).CrossRefGoogle Scholar
  23. Kristinsdottir, B.P., Z.B. Zabinsky, T. Csendes, and M.E. Tuttle, Methodologies for tolerance intervals. Interval Computations, 3, 133–147 (1993).Google Scholar
  24. Kristinsdottir, B.P., Z.B Zabinsky M.E. Tuttle and T. Csendes, Incorporating manufacturing tolerances in optimal design of composite structures, Engineering Optimization, 26, 1–23 1996CrossRefGoogle Scholar
  25. Markót, M.C., Optimal packing of 28 equal circles in a unit square — the first reliable solution. Numerical Algorithms, 37, 253–261 (2004).CrossRefGoogle Scholar
  26. Markót, M.C. and T. Csendes, A new verified optimization technique for the “packing circles in a unit square ” problems. SIAM Journal on Optimization, 16, 193–219 (2005).CrossRefGoogle Scholar
  27. Neumaier, A and T. Rage Rigorous chaos verification in discrete dynamical systems Physica D, 67, 327–346 1993CrossRefGoogle Scholar
  28. Rage, T., A Neumaier and C. Schlier Rigorous verification of chaos in a molecular model, Physical Review E, 50, 2682–2688 1994CrossRefGoogle Scholar
  29. Ratschek, H., and J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood, Chichester (1984).Google Scholar
  30. Ratschek, H. and J. Rokne, New Computer Methods for Global Optimization. Ellis Horwood, Chichester (1988).Google Scholar
  31. Ratschek, H. and J. Rokne, Experiments using interval analysis for solving a circuit design problem. Journal of Global Optimization, 3, 501–518 (1993).CrossRefGoogle Scholar
  32. Rump, S.M., INTLAB — INTerval LABoratory. In: T. Csendes (ed.) Developements in Reliable Computing. Kluwer, Dordrecht, 1999, pp. 77–104.Google Scholar
  33. Zgliczynski, P., Computer assisted proof of the horseshoe dynamics in the Hénon map. Random & Computational Dynamics, 5, 1–17 (1997).Google Scholar
  34. Zgliczynski, P., On smooth dependence on initial conditions for dissipative PDEs, an ODE-type approach. Journal of Differential Equations, 195, 271–283 (2003).CrossRefGoogle Scholar
  35. Zabinsky, Z.B., D.L. Graesser, M.E. Tuttle, and G.I. Kim, Global optimization of composite laminates using improving hit-and-run, in: Recent Advances in Global Optimization. Princeton University Press, Princeton (1992), pp. 343–368.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Tibor Csendes
    • 1
  1. 1.Institute of InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations