Skip to main content

Generation of Nanoparticles from Vapours in Case of Exhaust Filtration

  • Chapter
  • First Online:
Nanoparticles in medicine and environment
  • 1069 Accesses

Abstract

Generation, investigation and manipulation of nanostructured materials are of fundamental and practical importance for several disciplines including materials sciences and medicine. Recently, atmospheric new particle formation in the nanometer size range has been found to be a global phenomenon (Kulmala et al. 2004). The processes related to nanomaterials and atmospheric nanoparticles are at least similar and in some cases even identical. However, the detailed mechanisms for nucleation and nanoparticle formation are mostly unknown, largely depending on the incapability to generate and measure nanoparticles in a controlled way. In recent experiments an organic vapour (n-propanol) condenses on molecular ions as well as charged and uncharged inorganic nanoparticles via initial activation by heterogeneous nucleation (Winkler et al. 2008). In these experiments a smooth transition in activation behaviour as a function of size has been found, and activation did occur well before the onset of homogeneous nucleation. Furthermore, nucleation enhancement for charged particles and a significant negative sign preference were quantitatively detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto P, Hämeri K, Becker E, Weber R, Salm J, Mäkelä JM, Hoell C, O’Dowd CD, Karlsson H, Hansson H-C, Väkevä M, Koponen IK, Buzorius G, Kulmala M (2001) Physical characterization of aerosol particles during nucleation events. Tellus 53B:344–358

    Google Scholar 

  • Birmili W, Stratmann F, Wiedensohler A (1999) Design of a DMA-Based size spectrometer for a large particle size range and stable operation. J Aerosol Sci 30:549–553

    Google Scholar 

  • Brock CA (1998) A fast-response nuclei mode spectrometer for determining particle size distribution in the 3–100 nm diameter range: technical description, Technical Report, University of Denver, Denver, CO

    Google Scholar 

  • Chen D-R, Pui DYH, Hummes D, Fissan H, Quandt FR, Sem GJ (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (nano-DMA). J Aerosol Sci 29:497–509

    Article  CAS  Google Scholar 

  • de Juan L, Fernández de la Mora J (1998) Size analysis of nanoparticles and ions: running a Vienna DMA of near optimal length at Reynolds numbers up to 5000. J Aerosol Sci 29:617–626

    Article  Google Scholar 

  • Fernández de la Mora JF, de Juan L, Eichler T, Rosell J (1998) Differential mobility analysis of molecular ions and nanometer particles. Trends Anal Chem 17:328–339

    Google Scholar 

  • Dick WD, McMurry PH, Weber RJ, Quant R (2000) White-light detection for nanoparticle sizing with the TSI ultrafine condensation particle counter. J Nanoparticle Res 2:85–90

    Article  Google Scholar 

  • Hämeri K, Koponen IK, Aalto PP, Kulmala M (2002) The particle detection efficiency of the TSI-3007 condensation particle counter. J Aerosol Sci 33:1463–1469

    Article  Google Scholar 

  • Hering SV, Stoltzenburg MR (2005) A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci Technol 39:428–436

    Article  CAS  Google Scholar 

  • Herrmann W, Eichler T, Bernardo N, Fernández de la Mora JF, Turbulent transition arises at Reynolds number 35,000 in a short Vienna Type DMA with a large laminarization inlet. Abstract AAAR Conference, 15B5, 2000

    Google Scholar 

  • Hõrrak U, Salm J, Tammet H (1998) Bursts of intermediate ions in atmospheric air. J Geophys Res 103:13909–13915

    Article  Google Scholar 

  • Iida K, Stolzenburg M, McMurry P, Dunn M, Smith J, Eisele F, Keady P (2006) Contribution of ion-induced nucleation to new particle formation: methodology and its application to atmospheric observations in boulder. Colorado J Geophys Res 111:D23201. doi:10.1029/2006JD007167

    Article  Google Scholar 

  • Kerminen V-M, Kulmala M (2002) Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J Aerosol Sci 33:609–622

    Article  CAS  Google Scholar 

  • Kerminen V-M, Anttila T, Lehtinen KEJ, Kulmala M (2004) Parameterization for atmospheric new-particle formation: application to a system involving sulfuric acid and condensable water-soluble organic vapors. Aerosol Sci Technol 38:1001–1008

    Article  CAS  Google Scholar 

  • Kerminen V-M, Anttila T, Petäjä T, Laakso L, Gagné S, Lehtinen KEJ, Kulmala M (2007) Charging state of the atmospheric nucleation mode: implications for separating neutral and ion-induced nucleation. J Geophys Res 112:D21205. doi:10.1029/2007JD008649

    Article  Google Scholar 

  • Knutson EO, Whitby KT (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6:443–451

    Article  Google Scholar 

  • Kulmala M (2003) How particles nucleate and grow? Science 302:1000–1001

    Article  CAS  PubMed  Google Scholar 

  • Kulmala M, Kerminen V-M (2008) On the formation and growth of atmospheric nanoparticles. Atmos. Res. 90:132–150

    Google Scholar 

  • Kulmala M, Dal Maso M, Mäkelä JM, Pirjola L, Väkevä M, Aalto PP, Miikkulainen P, Hämeri K, O’Dowd CD (2001) On the formation, growth and composition of nucleation mode particles. Tellus 53B:479–490

    Google Scholar 

  • Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Google Scholar 

  • Kulmala M, Lehtinen KEJ, Laakso L, Mordas G, Hämeri K (2005) On the existence of neutral atmospheric clusters. Boreal Environ Res 10:79–87

    CAS  Google Scholar 

  • Kulmala M, Lehtinen KEJ, Laaksonen A (2006) Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos Chem Phys 6:787–793

    Article  CAS  Google Scholar 

  • Kulmala M, Mordas G, Petäjä T, Grönholm T, Aalto PP, Vehkamäki H, Hienola AI, Herrmann E, Sipilä M, Riipinen I, Manninen H, Hämeri K, Stratmann F, Bilde M, Winkler PM, Birmili W, Wagner PE (2007a) The condensation particle counter battery (CPCB): a new tool to investigate the activation properties of nanoparticles. J Aerosol Sci 38:289–304

    Article  CAS  Google Scholar 

  • Kulmala M, Riipinen I, Sipilä M, Manninen HE, Petäjä T, Junninen H, Dal Maso M, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison RM, Hanson I, Leung C, Lehtinen KEJ, Kerminen V-M (2007) Toward direct measurement of atmospheric nucleation. Science 318:89–92. 10.1126/science.1144124

    Google Scholar 

  • Kürten A, Curtius J, Nillius B, Borrmann S (2005) Characterization of an automated, water-based expansion condensation nucleus counter for ultrafine particles. Aerosol Sci Technol 39:1174–1183

    Article  Google Scholar 

  • Laakso L, Gagne S, Petäjä T, Hirsikko A, Aalto PP, Kulmala M, Kerminen V-M (2007) Detecting charging state of ultrafine particles: instrumental development and ambient measurements. Atmos Chem Phys 7:1333–1345

    Article  CAS  Google Scholar 

  • Lehtinen KEJ, Dal Maso M, Kulmala M, Kerminen V-M (2007) Estimating nucleation rates from apparent particle formation rates and vice-versa: revised formulation of the Kerminen–Kulmala equation. J Aerosol Sci 38:988–994

    Article  CAS  Google Scholar 

  • McMurry PH (2000) A review of atmospheric aerosol measurements. Atmos. Environ. 34:1959–1999

    Google Scholar 

  • Mirme A, Tamm E, Mordas G, Vana M, Uin J, Mirme S, Bernotas T, Laakso L, Hirsikko A, Kulmala M (2007) A wide-range multi-channel air ion spectrometer. Boreal Environ Res 12:247–264

    CAS  Google Scholar 

  • Misaki M (1964) Mobility spectrums of large ions in the New Mexico semidesert. J Geophys Res 69:3309–3318

    Article  Google Scholar 

  • Mordas G, Kulmala M, Petäjä T, Aalto PP, Matulevicius V, Grigoraitis V, Ulevicius V, Grauslys V, Ukkonen A, Hämeri K (2005) Design and performance characteristics of a condensation particle counter UF-02proto. Boreal Environ Res 10:543–552

    Google Scholar 

  • Mordas G, Sipilä M, Kulmala M (2008) Nanometer particle detection by the condensation particle counter UF-02 proto. Aerosol Sci Technol 42:521–527

    Article  CAS  Google Scholar 

  • O’Dowd CD, Aalto PP, Hämeri K, Kulmala M, Hoffmann T (2002) Atmospheric particles from organic vapours. Nature 416:497–498

    Article  PubMed  Google Scholar 

  • O'Dowd CD, Aalto PP, Yoon YJ, Hämeri K (2004) The use of the pulse height analyzer ultrafine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition. J Aerosol Sci 35:205–216

    Article  Google Scholar 

  • Peineke C, Attoui MB, Schmidt-Ott A (2006) Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations. J Aerosol Sci 37:1652–1661

    Google Scholar 

  • Rosser S, Fernández de la Mora J (2005) Vienna type DMA of high resolution and high flow rate. Aerosol Sci Technol 39:1191–1200

    Article  CAS  Google Scholar 

  • Saros M, Weber RJ, Marti J, McMurry PH (1996) Ultra fine aerosol measurement using a condensation nucleus counter with pulse height analysis. Aerosol Sci Technol 25:200–213

    Article  CAS  Google Scholar 

  • Scheibel HG, Porstendörfer J (1983) Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm. J Aerosol Sci 14:113–126

    Article  CAS  Google Scholar 

  • Sem GJ (2002) Design and performance characteristics of three continuous-flow condensation particle counters: a summary. Atmos Res 62:267–294

    Article  CAS  Google Scholar 

  • Sgro LA, Fernández de la Mora J (2004) A simple turbulent mixing CNC for charged particle detection down to 1.2 nm. Aerosol Sci Technol 38:1–11

    Article  CAS  Google Scholar 

  • Sipilä M, Lehtipalo K, Kulmala M, Petäjä T, Junninen H, Aalto PP, Manninen HE, Vartiainen E, Riipinen I, Kyrö E-M, Curtius J, Kürten A, Borrmann S, O’Dowd CD (2008) Applicability of condensation particle counters to measure atmospheric clusters. Atmos Chem Phys 8:4049–4060

    Article  Google Scholar 

  • Stoltzenburg MR, McMurry PH (1991) An ultrafine aerosol condensation nucleus counter. Aerosol Sci Technol 14:48–65

    Article  Google Scholar 

  • Tammet H (1995) Size and mobility of nanometer particles, clusters and ions. J Aerosol Sci 26:459–475

    Article  CAS  Google Scholar 

  • Tammet H (2004) Balance scanning mobility analyzer BSMA. In: Kasahara M, Kulmala M (eds) Nucleation and atmsopheric aerosols 2004, 16th Interantional Conference, Kyoto 2004, pp 294–297

    Google Scholar 

  • Ude S, Fernández de la Mora J (2005) Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J Aerosol Sci 36:1224–1237

    Article  CAS  Google Scholar 

  • Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13:230–240

    Article  CAS  Google Scholar 

  • Weber RJ, McMurry PH, Eisele FL, Tanner DJ (1995) Measurement of expected nucleation precursor species and 3–500-nm diameter partciles at Mauna Loa observatory Hawaii. J Atmos Sci 52:2242–2257

    Article  Google Scholar 

  • Weber RJ, Stolzenburg MR, Pandis SN, McMurry PH (1998) Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle ( 3–10 nm) size distributions. J Aerosol Sci 29:601–615

    Article  CAS  Google Scholar 

  • Wiedensohler A, Aalto P, Covert D, Heintzenberg J, McMurry PH (1994) Intercomparison of four methods to determine size distributions of low-concentration ( 100 cm−3), ultrafine aerosols (3 < Dp < 10 nm) with illustrative data from the arctic. Aerosol Sci Technol 21:95–109

    Article  Google Scholar 

  • Winkler PM, Steiner G, Vrtala A, Vehkamäki H, Noppel M, Lehtinen KEJ, Reischl GP, Wagner PE, Kulmala M (2008) Heterogeneous nucleation experiments bridging scale from molecular ion clusters to nanoparticles. Science 319:1374–1377

    Article  CAS  PubMed  Google Scholar 

  • Winklmayr W, Reischl GP, Linde AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci 22:289–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by European Commission 6th Framework programme project EUCAARI, contract no 036833-2 (EUCAARI). Maj and Tor Nessling foundation and the Academy of Finland are also acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Kulmala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kulmala, M., Sipilä, M. (2010). Generation of Nanoparticles from Vapours in Case of Exhaust Filtration. In: Marijnissen, J., Gradon, L. (eds) Nanoparticles in medicine and environment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2632-3_5

Download citation

Publish with us

Policies and ethics